УНИВЕРЗИТЕТ У БЕОГРАДУ

МАШИНСКИ ФАКУЛТЕТ

ПРИМЕНА ЗД МОДЕЛА ЗА АНАЛИТИЧКО-ЕКСПЕРИМЕНТАЛНО ОДРЕЂИВАЊЕ ПАРАМЕТАРА СТАТИЧКЕ СТАБИЛНОСТИ И СПОЉАШЊЕГ ОПТЕРЕЋЕЊА РОТОРНОГ БАГЕРА

– ТЕХНИЧКО РЕШЕЊЕ (КАТЕГОРИЈА М83) –

БЕОГРАД, децембар 2017.

САДРЖАЈ

1. Аутори техничког решења	1
2. Назив техничког решења и пријављена категорија	1
3. Кључне речи	1
4. Инвеститор	1
5. Година израде техничког решења	1
6. Година почетка примене техничког решења	1
7. Научна област и научна дисциплина којој припада техничко решење	1
8. Проблем који се решава применом техничког решења	2
9. Стање решености проблема у свету	3
10. Опис техничког решења	5
11. Техничка документација	33
12. Доказ о примени техничког решења	278
13. Листа раније прихваћених техничких решења	278
14. Литература	281
15. Прилози	283
15.1 Прилог 1: Уговор	284
15.2 Прилог 2: Потврда корисника	289
15.3 Прилог 3: Рад публикован у часопису са SCI листе (категорија: M22)	291

1. АУТОРИ ТЕХНИЧКОГ РЕШЕЊА

проф. др Срђан Бошњак, Универзитет у Београду-Машински факултет доц. др Небојша Гњатовић, Универзитет у Београду-Машински факултет др Зоран Петковић, ред. професор у пензији, Универзитет у Београду-Машински факултет истраживач-сарадник, Горан Милојевић, Универзитет у Београду-Машински факултет истраживач-сарадник, Иван Миленовић, Универзитет у Београду-Машински факултет истраживач-сарадник, Александар Стефановић, Универзитет у Београду-Машински факултет

2. НАЗИВ ТЕХНИЧКОГ РЕШЕЊА И ПРИЈАВЉЕНА КАТЕГОРИЈА

"Примена ЗД модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера" Категорија: M83

3. КЉУЧНЕ РЕЧИ

роторни багер, обртна горња градња, тежина, положај тежишта, оптерећења

4. ИНВЕСТИТОР

Техничко решење развијено је током пружања услуге под називом "Израда пројекта стабилности горње градње на багеру SchRs 1600 (погонски бр. 3) на ПК Тамнава-Западно поље према пројектном задатку" за потребе Привредног друштва за производњу, прераду и транспорт угља, РБ "КОЛУБАРА" д.о.о., Лазаревац, ул. Светг Саве бр. 1. Уговор је дат у Прилогу 1.

5. ГОДИНА ИЗРАДЕ ТЕХНИЧКОГ РЕШЕЊА

2015.

6. ГОДИНА ПОЧЕТКА ПРИМЕНЕ ТЕХНИЧКОГ РЕШЕЊА

2015. (Прилог 2: Потврда корисника)

7. НАУЧНА ОБЛАСТ И НАУЧНА ДИСЦИПЛИНА КОЈОЈ ПРИПАДА ТЕХНИЧКО РЕШЕЊЕ

Научна област: машинство

Ужа научна област: механизација

8. ПРОБЛЕМ КОЈИ СЕ РЕШАВА ПРИМЕНОМ ТЕХНИЧКОГ РЕШЕЊА

Основни проблем који се решава применом техничког решења јесте проблем дистрибуције маса обртне горње градње роторног багера. Одређивање масе (тежине) обртне градње и положаја њеног средишта (тежишта) представља кључни корак при решавању проблема њене статичке стабилности. Осим за решавање проблема статичке стабилности, подаци добијени применом техничког решења представљају поуздану основу за:

- анализу чврстоће структуре [1];
- анализу динамичког понашања обртне горње градње [2,3];
- анализу оптерећења и оцену века радиаксијалног лежаја обртне горње градње [4,5],
 чији пречник код багера на коме је примењено техничко решење износи 10 m.

Развијено техничко решење може успешно да се примени и на одлагаче, мобилне транспортере и багере са повлачном кашиком-драглајне [1].

Примена техничког решења доприноси поузданости и сигурности рада роторних багера, као основних машина на површинским угљенокопима, што има изузетан значај ако се сагледа у светлу чињенице да у укупној производњи електричне енергије у Србији доминира електрична енергија добијена из лигнита (70,3% у 2015. [6]).

9. СТАЊЕ РЕШЕНОСТИ ПРОБЛЕМА У СВЕТУ

Сопствена тежина подсистема стреле ротора доминантно утиче на интензитет силе у ужету механизма за промену угла нагиба стреле ротора [1]. Осим тога, положај тежишта обртне горње градње значајно утиче на дистрибуцију оптерећења унутар радиаксијалног лежаја којим се обртна горња градња ослања на доњу градњу, а тиме и на његов век [4,5]. На основу изложених чињеница закључује се да прецизна идентификација основних параметара статичке стабилности (ОПСС: тежина и положај тежишта) омогућава: (1) поуздано подешавање граничних вредности сила у ужадима механизма за промену угла нагиба стреле ротора, које представљају основну заштиту од губитка статичке стабилности обртне горње градње; (2) идентификацију оптерећења кука-хватаљки, које спречавају губитак статичке стабилности у екстремним случајевима оптерећења; (3) одређивање неравномерности оптерећења котрљајних тела радиаксијалног лежаја за ослањање обртне горње градње.

Основне експлоатационе карактеристике, поузданост и безбедност роторних багера доминантно одређују параметри горње градње. Они се могу сврстати у три основне групе: (1) параметри који одређују статичку стабилност горње градње; (2) параметри који одређују чврстоћу горње градње; (3) параметри који одређују динамичко понашање горње градње. Заједнички именитељ свих наведених параметара јесте маса горње градње односно, њена дистрибуција по структури. Зато се одређивању ОПСС, мора посветити посебна пажња у свим фазама пројектовања роторног багера. Чак и код светски реномираних произвођача роторних багера јављају се знатне разлике поменутих параметара горње градње током развоја пројекта, што је најчешће последица накнадних захтева купца, или немогућности набавке пројектом предвиђених компоненти. Управо због тога, након завршетка монтаже машине обавезно се врши експериментално одређивање тежине горње градње и положаја њеног тежишта [7-10] са циљем да се изврши валидација пројектованих ОПСС [11,12]. Према цитираној литератури, поступак валидације изводи се упоређивањем пројектоване и измерене тежине горње градње. Уколико је разлика измерене и пројектоване тежине већа од 5%, онда се захтева понављање и прорачуна и вагања. О упоређивању положаја тежишта, одређеног аналитички и експериментом, у цитираној литератури нема ни помена. С обзиром на чињеницу да се у литератури [2-12], као ни у [13-16], дакле у целокупној литератури и техничкој регулативи која је била доступна ауторима, нигде не наводи могућност спрезања резултата добијених аналитички и експериментом, техничким решењем постављен је оригинални метод формирања аналитичког модела обртне горње градње потпуно усаглашеног са изведеним стањем утврђеним експериментом.

Суштину техничког решења и његову примену код роторног багера SchRs 1600 аутори су публиковали у часопису Journal of Zhejiang University - SCIENCE A (категорија M22) као рад под називом "Basic parameters of the static stability, loads and strength of the vital parts of the bucket wheel excavator's slewing superstructure" (https://doi.org/10.1631/jzus.A1500037), Прилог 3. Поменути рад представља први рад из области идентификације и оцене основних параметара статичке стабилности роторних багера објављен у часопису са SCI листе, што сведочи о научном потенцијалу техничког решења.

10. ОПИС ТЕХНИЧКОГ РЕШЕЊА

Основна идеја техничког решења јесте да се спрезањем резултата аналитичког и експерименталног поступка одређивања ОПСС формира модел који је у потпуности усаглашен са стварном сликом (изведеним стањем) обртне горње градње и који се са довољном тачношћу може користити за анализу статичке стабилности, као и анализу оптерећења и напонског стања структуре. Формирање таквог модела засновано је на новоуведеном концепту "корективне масе" [1].

Роторни багер Krupp SchRs 1600, слика 1, пуштен је у експлоатацију 2010. године и опремљен је системом за континуално праћење (мониторинг) напонских стања виталних елемената носеће конструкције. Полазећи од чињенице да оптерећење од сопствене тежине представља доминантни део укупног оптерећења структурних елемената на линији мерења напонских стања, на основу конструкционе документације произвођача (2832 цртежа), у првој фази примене техничког решења развијен је 3Д модел багера (са 40856 делова), слике 2-6.

Слика 1. Роторни багер Krupp SchRs 1600

Слика 2. 3Д модел роторног багера KRUPP SchRs 1600

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Слика 3. Експандирани 3Д модел стреле ротора

Слика 4. Експандирани ЗД модел стреле баласта

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Слика 5. Експандирани 3Д модел доње градње

Слика 6. Експандирани 3Д модел гусеничног кретача

Основни параметри горње градње, одређени на основу 3Д модела приказаних на сликама

3 и 4, дати су у табели 1 и презентирани на сликама 7-9.

Табела 1.	Основни	параметри	горње	градње
-----------	---------	-----------	-------	--------

Параметар		ЗД модел					
Укупна маса горње градње без баласта (t)			іста (t)	978,266			
Маса стреле рот стубом 1 (t)	ора са зате	гама и		476,119			
Маса стреле бал 2 и обртном пла	іаста са зат тформом (егама, ст [.] t)	убом	502,147			
Положај стреле	ротора			Апсциса тежишта горње градње <i>хт</i>	(mm)		
Поткоп <i>, α_{si}</i>	₈ =–19,52°			-6040			
Хоризонта.	лни, α _{sr} =0°			-6253			
Горњи <i>, α_{sr}</i>	=14,1°			-5573			
Положај стреле	ротора			Баласт потребан за центрисање теж	ишта (t)		
Ποτκοπ <i>,</i> α _s ,	₁=−19,52°			173,2			
Хоризонта.	лни, α _{sr} =0°			179,3			
Горњи <i>, α_{sr}</i>	=14,1°			159,8			
Положај стреле	ротора			Сила у ужету за вешање стреле ротора (kN)			
Ποτκοπ <i>,</i> α _{si}	_² =−19,52°			245,2			
Хоризонта.	лни, α _{sr} =0°			237,2			
Горњи, α _{sr}	=14,1°			228,3			
	5500	1	1				
-	5600	 	 	X: 14.1 Y: -5573			
-4	5700		L				
-{	5800	 	 				
Ê t	5900		 				
Ē, × - (6000 - X: -19.52 Y: -6040 -		 				
	s100						
-(5100	 	 				
-(6200		 	X: 0 Y:-6253			
-(6300						
-(-20	-15 -′	10 Nagib s	-5 0 5 10 15 strele rotora u stepenima			

Слика 7. Пројектована апсциса тежишта горње градње без баласта

- 9 -

У другој фази примене техничког решења извршена је упоредна анализа параметара горње градње одређених на основу "Preliminary Stability Calculation – Revision 1" (Круп, у наставку Елаборат 1 – Е1) и параметара одређених применом 3Д модела, слике 10-12, табела 2.

Слика 10. Пројектована апсциса тежишта горње градње без баласта

Слика 11. Масе баласта потребне за центрисање тежишта горње градње

Параметар	Елаборат 1	3Д модел	Разлика "ЗД-Е1"
Укупна маса горње градње без баласта (t)	992,162	978,266	–13,896 t
Маса стреле ротора са затегама и стубом 1 (t)	451,395	476,119	24,724 t
Маса стреле баласта са затегама, стубом 2 и обртном платформом (t)	540,767	502,147	-38,620 t
Положај стреле ротора	Апсциса теж градње без ба	кишта горње аласта x ₇ (mm)	
Поткоп, <i>а_{sr}=</i> –19,52°	-5142	-6040	–898 mm
Планум,	-5302	-6221	–919 mm
Хоризонтални, а _{sr} =0°	-5303	-6253	–950 mm
Горњи, <i>а_{sr}</i> =14,1°	-4636	-5573	–937 mm
		највеће одстуг	ање: –951 mm
Положај стреле ротора	Баласт по центрисање	требан за тежишта (t)	
Поткоп <i>, а_{sr}=</i> —19,52°	148,7	173,2	24,5 t
Хоризонтални, <i>а_{sr}=</i> 0°	153,4	179,3	25,9 t
Горњи, <i>а_{sr}</i> =14,1°	134,1	159,8	25,7 t
Максимална вредност	155,9	181,5	25,6 t
Положај стреле ротора	Сила у ужадима котурача за дизање стреле ротора (kN)		
Поткоп <i>, а_{sr}=</i> –19,52°	234,3	245,2	10,9 kN
Хоризонтални, <i>а_{sr}=</i> 0°	225,9	237,2	11,3 kN
Горњи, <i>а_{sr}=</i> 14,1°	216,8	228,3	11,5 kN

Табела 2. Упоредни приказ параметара горње градње: E1 vs 3Д

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- Маса горње градње према 3Д моделу мања је за ≈13,9 t, уз изразито неповољну дистрибуцију разлике маса основних подструктура, са аспекта положаја тежишта и интензитета силе у ужадима котураче за подизање стреле ротора; наиме, маса стреле ротора са затегама и стубом 1 већа је код 3Д модела за ≈24,7 t, док је маса стреле баласта са затегама, стубом 2 и обртном платформом мања за ≈38,6 t.
- Због знатно неповољнијег односа маса подструктура, апсциса тежишта горње градње без баласта код 3Д модела ближа је ротору за готово 1 m; максимална разлика износи –951 mm, а минимална –898 mm.

- 3. Према Елаборату 1, при хоризонталном положају стреле ротора потребно је 153,4 t баласта, док је према 3Д моделу потребно 179,3 t баласта.
- 4. Маса баласта потребна за центрисање тежишта горње градње без баласта већа је за ≈25 t код 3Д модела; максимална разлика од 25,9 t јавља се при хоризонталном положају стреле ротора, а минимална разлика од 24,5 t јавља се када је стрела ротора у поткопу.
- 5. Као последица лошије сопствене уравнотежености горње градње, сила у ужету котураче за подизање стреле ротора већа је за ≈11 kN код 3Д модела; максимална разлика од 11,5 kN јавља се у горњем положају стреле ротора, а минимална разлика од 10,9 kN јавља се у доњем положају стреле ротора.

На основу изложеног закључује се да постоји знатна неусаглашеност Елабората 1 и графичке документације на основу које је формиран ЗД модел.

У трећој фази примене техничког решења извршена је упоредна анализа параметара горње градње одређених на основу "Preliminary Stability Calculation – Revision 1" (Круп, E1) и параметара одређених на основу "Final Stability Calculation – Revision 1" (Круп, Елаборат 2 – E2), слике 13-15, табела 3.

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Слика 15. Пројектовани интензитети сила у једној ламели затеге

Табела 3. Упоредни приказ парам	иетара горње градње	e: E1 vs E2	
Параметар	Елаборат 1	Елаборат 2	Разлика "Е2-Е1"
Укупна маса горње градње (t)	1189,162	1198,370	9,208 t
Маса баласта (t)	197,0	221,0	24,00 t
Маса конструкције горње			
градње са опремом, без баласта	992,162	977,370	−14,792 t
(t)			
Маса стреле ротора са затегама и	151 305	167 518	16 173 t
стубом 1 (t)	431,333	407,518	10,125 (
Маса стреле баласта са затегама	111 767	378 139	-86 628 t
и стубом 2 (t)	414,707	520,155	-00,020 t
Маса обртне платформе (t)	126,0	181,713	55,713 t
Положај стреле ротора	Апсциса теж	ишта <i>x</i> т (mm)	
Поткоп, <i>а_{sr}=</i> –19,52°	1392	1370	–22 mm
Планум, <i>а_{sr}=</i> —14,6°	1259	1234	–25 mm
Доњи, <i>α_{sr}=</i> –14,3°	1253	1228	–25 mm
Доњи, <i>α_{sr}=</i> –12,9°	1228	1204	–24 mm
Доњи, <i>α_{sr}=−</i> 11,4°	1208	1183	–25 mm
Хоризонтални, <i>а_{sr}=</i> 0°	1258	1238	–20 mm
Горњи, <i>а_{sr}</i> =13,55°	1783	1779	–4 mm
Горњи, <i>α_{sr}</i> =14,1°	1814	1812	–2 mm
Положај стреле ротора	Пројектована апсці		
	градње без б	баласта (mm)	
Поткоп, <i>а_{sr}=</i> —19,52°	-5142	-6036	–894 mm
Хоризонтални, <i>а_{sr}=</i> 0°	-5303	-6198	–895 mm
Горњи, <i>а_{sr}</i> =14,1°	-4636	-5494	–858 mm
		највеће одсту	ипање: –902 mm
Положај стреле ротора	Сила у у>	кету (kN)	
Поткоп, <i>а_{sr}=</i> —19,52°	234,3	242,1	7,8 kN
Хоризонтални, <i>а_{sr}=</i> 0°	225,9	233,2	7,3 kN
Горњи, <i>а_{sr}</i> =14,1°	216,8	223,7	6,9 kN
Положај стреле ротора	Сила у једној ла	мели затеге (kN)	
Поткоп, <i>а_{sr}=</i> –19,52°	1333	1372	39,0 kN
Хоризонтални, <i>а_{sr}=</i> 0°	1397	1437	40,0 kN
Горњи, а _{sr} =14,1°	1343	1380	37,0 kN
Максимална сила у ламели	1398	1438	40,0 kN

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- Укупна маса горње градње према Елаборату 2 већа је за ≈ 9,2 t, док је маса конструкције горње градње са опремом, без баласта, мања за ≈ 14,8 t, уз изразито неповољну дистрибуцију разлике маса основних подструктура, са аспекта положаја тежишта и интензитета силе у ужадима котураче за подизање стреле ротора; наиме, маса стреле ротора са затегама и стубом 1 према Елаборату 2 већа је за ≈ 16,1 t, док је маса обртне платформе већа за ≈ 55,7 t; истовремено, маса стреле баласта са затегама и стубом 2 мања је за ≈ 86,6 t.
- Због знатно неповољнијег односа маса подструктура, апсциса тежишта горње градње без баласта према Елаборату 2 ближа је ротору за готово 1 m; максимална разлика апсциса одређених према Елаборату 2 и Елаборату 1 износи –902 mm, а минимална – 858 mm.
- Маса баласта потребна за центрисање горње градње, израчуната на основу Елабората 2, већа је за ≈24 t; максимална разлика износи 24,32 t, а минимална разлика од 23,3 t јавља се када је стрела ротора у горњем положају.
- Према Елаборату 1, при хоризонталном положају стреле ротора потребно је 153,4 t баласта за центрисање тежишта горње градње, док је према Елаборату 2 потребно 177,5 t баласта, слика 25. Управо за величину разлике маса поменутих баласта (24,1 t≈24 t), слика 26, повећана је маса баласта у Елаборату 2.
- 5. Пројектовани положаји тежишта горње градње су усаглашени, слика 13; максимално одступање од 25 mm јавља се када је стрела ротора у плануму.
- 6. Према Елаборату 1 за прорачун чврстоће горње градње меродавна је резерва баласта од 25 t у односу на пројектовану масу баласта од 197,0 t. То значи да је прорачун чврстоће изведен узимајући у обзир масу баласта од 197,0 t + 25,0 t = 222,0 t; с обзиром на чињеницу да пројектована маса баласта према Елаборату 2 износи 221,0 t, од резерве баласта према Елаборату 1 остаје 1,0 t.
- 7. Као последица лошије сопствене уравнотежености горње градње, сила у ужету котураче за подизање стреле ротора израчуната на основу Елабората 2 већа је за ≈7 kN (максимална разлика од 7,8 kN јавља се када је стрела ротора у поткопу, а минимална разлика од 6,9 kN јавља се у горњем положају стреле ротора); већи интензитет силе у ужету условљава и већи интензитет сила у затегама стреле ротора –

при хоризонталном положају стреле ротора сила у једној ламели затеге већа је за 40 kN, а у горњем положају стреле ротора за 37,0 kN.

На основу изложеног, закључује се да постоји знатна неусаглашеност подлога: Елабората 1 и Елабората 2. Она онемогућава добијање резултата коначноелементне анализе који би били валидни са аспекта калибрације система за праћење напонског стања структуре.

Да би се применом методе коначних елемената добили валидни резултати напонско – деформационе анализе, неопходно је отклонити неусаглашености подлога. Једини пут је упоредна анализа резултата добијених на основу ЗД модела, Елабората 1, Елабората 2 и мерења тежине горње градње и сила у ужадима котураче за подизање стреле ротора.

У четвртој фази истраживања извршена је упоредна анализа резултата добијених на основу: Елабората 1, Елабората 2, Мерења 1 (М1, вагање горње градње са баластом масе 177,017 t), Мерења 2 (М2, вагање горње градње са баластом масе 231,977 t) и 3Д модела.

Апсцисе тежишта одређене на основу елабората Е1 и Е2 знатно одступају у односу на вредности утврђене мерењем М1, слика 16, табела 4.

Слика 16. Апсцисе тежишта горње градње са баластом 177,017 t

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Положај стреле тотора	E1	E2	Вагање (М1)	Одступа	ње [mm]
	<i>x_{T,E1}</i> [mm]	<i>x_{T,E2}</i> [mm]	<i>x_{T,V}</i> [mm]	X T,V X T,E1	X _{T,V} — X _{T,E2}
планум, а _{sr} =—12,9°	663	-51	-398	-1061	-347
хоризонтални, α _{sr} =0°	693	-15	-356	-1049	-341
горњи, а _{sr} =14,1°	1259	581	249	-1010	-332

Табела 4. Апсцисе тежишта горње градње: Елаборат 1, Елаборат 2 и Мерење 1

Са циљем да отклони неусаглашеност параметара одређених на основу Елабората 2 и резултата Мерења 1, пројектант багера (Круп) кориговао је (увећао) масу горње градње за $\Delta m_{GG}^{E2} = 17,788 \text{ t}$ (разлика масе горње градње утврђене Мерењем 1 и масе горње градње према Елаборату 2) са средиштем у тачки са координатама $x_{1\Delta m} = -18347,8 \text{ mm}$, $y_{1\Delta m} = -162,1 \text{ mm}$ и $z_{1\Delta m} = 3429 \text{ mm}$ у односу на координатни систем везан за зглоб стреле ротора. На тај начин добијена је добра усаглашеност положаја апсциса тежишта, слика 17. Међутим, то је условило веће интензитете сила у ужетном систему вешања стреле ротора, слика 18, и сила у затегама стреле ротора, слика 19.

Слика 17. Апсцисе тежишта коригованог модела горње градње према E2 са баластом 177,017 t (црвеним маркерима означени су резултати мерења)

Слика 18. Сила у ужету котураче за промену угла нагиба стреле ротора

Слика 19. Силе у затегама стреле ротора (по једној ламели затеге)

Да би се кориговао положај тежишта горње градње, пре Мерења 2 (пре вагања) додато је 54,96 t баласта. Дакле, укупна маса баласта приликом другог вагања износила је $m_{B2}=m_{B1}+54,96=177,017+54,96=231,977$ t. Промене апсцисе тежишта горње градње при тој маси баласта, као и резултат другог вагања, приказане су на слици 20.

Слика 20. Апсцисе тежишта горње градње са баластом 231,977 t

Дијаграм зависности апсцисе тежишта горње градње према Елаборату 2 са коригованом масом стреле ротора и 231,977 t баласта приказан је на слици 21. На истој слици приказан је и резултат добијен другим вагањем (Мерење 2), који је у доброј сагласности са њим.

Слика 21. Апсцисе тежишта горње градње према Елаборату 2 са коригованом масом стреле ротора и 231,977 t баласта

На основу презентираних резултата закључује се да модел формиран према Елаборату 2, уз корекцију масе према резултатима Мерења 1, даје најбољу апроксимацију апсцисе тежишта горње градње, када је реч о варијантама анализираним у четвртој фази истраживања. Истовремено, у односу на Елаборат 1 и Елаборат 2, максимални интензит силе у ужету котураче система за подизање стреле ротора већи је за 15 kN и 7,2 kN, респективно, слика 18. Када је реч о максималној сили у једној ламели затеге стреле ротора, посматране разлике износе 83 kN, односно 43 kN, слика 19.

Као основа за наставак анализе (пета фаза истраживања) усвојени су резултати Мерења 1 и Мерења 2, као и 3Д модел развијен током прве етапе истраживања (слике 2-6). Корекција масе 3Д модела извршена је на основу резултата Мерења 1, табела 5.

Табела 5.	Тежина и апсциса тежишта го	рње градње: ЗД модел и Ме	ерење 1

Положај	Укуп	на тежина (G (kN)	Апсц	иса тежишт	a <i>x</i> ⊤ (m)		<i>G x</i> _τ (kNm))
CP ¹⁾	ЗД	M1	'М1-3Д'	ЗД	M1	'М1-3Д'	ЗД	M1	'М1-3Д'
1	11333,3	11501,1	167,8	-0,066	-0,356	-0,290	-751,8	-4094,4	-3342,6
2	11333,3	11499,2	165,9	-0,075	-0,398	-0,323	-851,3	-4576,7	-3725,4
3	11333,3	11499,4	166,1	0,509	0,249	-0,260	5770,2	2863,4	-2906,8

¹Положај 1: СР хоризонтална; Положај 2: СР у доњем положају под углом *а*_{SR}=–12,9°; Положај 3: СР у горњем положају под углом *а*_{SR}=14,1°

На основу упоредне анализе резултата, табела 5, закључује се да је 3Д модел лакши за

$$\Delta G_{GG}^{3D} = \frac{1}{3} \sum_{p=1}^{3} (G_p^{M1} - G_p^{3D}) = \frac{1}{3} (167,8 + 165,9 + 166,1) = 166,6 \text{ kN},$$

односно, да масу 3Д модела теба увећати за

$$\Delta m_{GG}^{3D} = \frac{\Delta G_{GG}^{3D}}{g} = \frac{166,6}{9,81} = 16,98 \text{ t.}$$

Апсциса средишта корективне масе горње градње 3Д модела у односу на координатни систем *x*₁*y*₁*z*₁ везан за зглоб стреле ротора одређује се на основу израза

$$x_{1\Delta m}^{3D} = \frac{G_1^{M1} x_{T1}^{M1} - G_1^{3D} x_{T1}^{3D}}{\Delta G_{GG}^{3D}} + 3,878 =$$

= $\frac{11501,1 \times (-0,356) - 11333,3 \times (-0,066)}{166,6} + 3,878 = -16,189 \text{ m}.$

Да би се формирао модел који истовремено даје добре апроксимације апсцисе тежишта горње градње у доњем (Положај 2) и горњем мерном положају (Положај 3), неопходно је збир апликата средишта корективне масе одређених на основу резултата Мерења 1 кориговати фактором *k*=0,4967, слика 22. При тој вредности фактора *k*, апсолутне вредности одступања апсцисе тежишта мање су од 6 mm, на целокупном домену промене угла нагиба стреле ротора, слика 23, табела 6.

Слика 22. Зависност одступања апсцисе тежишта од фактора корекције апликата

Слика 23. Апсцисе тежишта – 3Д модел, 3Д модел са коригованом масом, Мерење 1

Положаі	Апсциса тежишта (mm)					
стреле	3Д, коригована маса		ригована маса Вагање		Одступање	
ротора ¹⁾	X _{T3D}	У тзD	X _{T,V}	y <i>y</i>	X _{T,V} — X _{T3D}	у т, v—у тзD
1	-356,0	-121,4	-356	-125	0	-3,6
2	-392,3	-121,4	-398	-121	-5,7	0,4
3	254,7	-121,4	249	-118	-5,7	3,4

Табела 6. Апсциса тежишта: 3Д модел са коригованом масом vs M1

¹⁾Положај 1: СР хоризонтална; Положај 2: СР у доњем положају под углом $\alpha_{SR} = -12,9^{\circ};$ Положај 3: СР у горњем положају под углом $\alpha_{SR}=14,1^{\circ}$

Упоредни прикази основних параметара горње градње са 177,017 t баласта (маса баласта при Мерењу 1) одређених током првих пет фаза примене техничког решења, дати су на сликама 24-27 и у табели 7. На основу презентираних резултата, закључује се да 3Д модел са коригованом масом даје набоље приближење резултатима Мерења 1. Управо зато, он се усваја као основа за наставак анализе и идентификацију напонско – деформационог стања структуре горње градње.

I I						
Параметар	E1	E2	Е2,кор	ЗД	ЗД,кор	M1
Укупна маса горње градње (t)	1169,179	1154,387	1172,263	1155,283	1172,263	1172,263
Маса баласта (t)	177,017	177,017	177,017	177,017	177,017	177,017
Маса горње градње без баласта (t)	992,162	977,370	995,246	978,266	995,246	995,246
Положај стреле ротора			Апсциса теж	ишта <i>x_т</i> (mm)		
Поткоп, <i>α_{sr}=</i> —19,52°	829	122	-219	114	-215	-
Доњи, <i>α_{sr}=</i> —12,9°	663	-51	-392	-75	-392	-398
Хоризонтални, а _{sr} =0°	693	-15	-352	-66	-356	-356
Горњи, <i>α_{sr}</i> =14,1°	1259	581	256	509	255	249
Положај стреле ротора			Сила у уж	ету (kN) ¹⁾		
Поткоп, <i>α_{sr}=</i> —19,52°	234,3	242,1	249,3	245,2	252,2	_
Хоризонтални, а _{sr} =0°	225,9	233,2	240,0	237,2	242,9	_
Горњи, <i>α_{sr}</i> =14,1°	216,8	223,7	230,2	228,3	233,1	_
Положај стреле ротора	Сила у једној ламели затеге (kN) 1)					
Поткоп, <i>а_{sr}=</i> —19,52°	1333	1372	1415	1393	1435	_
Хоризонтални, α _{sr} =0°	1397	1437	1480	1462	1499	_
Горњи <i>, а_{sr}=14,1</i> °	1343	1380	1420	1407	1437	_
$^{1)}$ 3a a-10 m/s ²						

Табела 7. Упоредни приказ параметара горње градње

′3a g=10 m/s·

Слика 26. Сила у ужету котураче за промену угла нагиба стреле ротора

Шеста фаза примене техничког решења обухвата анализу оптерећења роторног багера у нормалном раду – случај оптерећења H1b према DIN 22261-2. Да би се извршила идентификација оптерећења у целокупном дијапазону промене угла нагиба стреле ротора, развијен је софтвер чија је валидација извршена на основу резултата добијених за улазне податке преузете из Елабората 2, табела 8. Применом поменутог софтвера одређени су карактери промене парцијалних оптерећења ужетног система за вешање стреле ротора, слике 28-31.

Табела 8.

Оптерећење	Ознака	Интензитет (kN)
Сопствена тежина	E	11983,7 ¹⁾
Транспортовани материјал	F1	376,1
Кора	V	
трака 1	V1	37,6
ротор	VO	196,6
Нагиб (5,0 %)	N	
сопствена тежина	N _E	599,2
транспортовани материјал	N _{F1}	18,8
кора на траци 1	N _{V1}	1,9
кора на ротору	N _{VO}	9,8
Номинална резна сила	U	
напред	U _F	505,1
доле	U_L	505,1
Динамички утицаји ²⁾	D	0

¹⁾За *g*=10 m/s²; ²⁾Динамички утицаји у Елаборату 2 нису узети у обзир, зато што се прорачун односи на статичку стабилност – стабилност против претурања

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Седма и осма фаза примене техничког решења посвећене су анализи оптерећења виталних елемената структуре горње градње, при чему су отклоњене неусаглашености прорачуна (Круп) и конструкционе документације (Круп). Интензитети сила које оптерећују поменуте елементе структуре, потпуно усаглашени са резултатима мерења (вагања горње градње) добијени су применом развијеног софтвера и представљају основу за валидацију коначноелементних модела подструктура горње градње, развијених на основу одговарајућих 3Д модела, слике 32 и 33. Девета и десета фаза примене техничког решења обухватају идентификацију напонских стања, слике 34 и 35.

Слика 32. 3Д модел подструктуре стреле ротора

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Слика 33. 3Д модел подструктуре стреле баласта

Слика 34. Напонско поље подструктура стреле ротора под дејством сопствене тежине (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

Примена 3Д модела за аналитичко-експериментално одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера

Слика 35. Напонско поље подструктура стреле баласта под дејством сопствене тежине (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

Калибрација и контрола система за континуално праћење напонских стања виталних елемената структуре извршена је на основу вредности релативних деформација одређених коначноелементним анализама подструктура за случај дејства сопствене тежине. Међутим, резултати прорачуна показали су да је напонско стање појединих елемената носеће конструкције недопустиво високо, чак и у стању мировања машине, дакле када је целокупна структура изложена дејству само сопствене тежине и тежине машинских и електричних подсистема, слика 36, табела 9.

Vuuva	Максимални нефакторисани напон	Допуштени напон (H1b)				
JERG	kN/cm ²					
Стрела ротора	22,2	21,0				
Стуб 1	19,4	21,0				
Затега стреле ротора	25,2	22,3				
Стрела баласта	21,4	21,0				
Стуб 2	17,7	21,0				
Затега стреле баласта	22,4	22,3				

Табела 9. Максимални нефакторисани напони од сопствене тежине и допуштени напони

С обзиром на чињеницу да отказ (лом) ушки, чија су напонска стања приказана у табели 9, неминовно доводи до колапса целокупне машине, у наставку истраживања извршена је

идентификација њиховог напонског стања за случај оптерећења H1b (багер у нормалном раду), слика 37. Максималне вредности факторисаних напона јављају се у зони контакта осовинице и отвора и не представљају опасност за интегритет структуре, Међутим, вредности факторисаних напона у критичном пресеку ушке (пресек А-А, управан на линију дејства силе, слика 37) су недопустиво високе – веће од одговарајуће минималне вредности напона на граници течења, слика 38, табела 10.

Слика 36. Детаљ напонског поља стреле ротора под дејством сопствене тежине (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

Ушка	Максимални напон у критичном пресеку (kN/cm²)	Дубина зоне преоптерећења (mm)
Затега стреле ротора	49,2	17
Стрела ротора	47,8	17
Затега стреле баласта	45,3	13
Стрела баласта	43,2	13

Табела 10. Максималне вредности факторисаних напона и дубине зона преоптерећења

Слика 37. Факторисани напони ушке на стрели ротора (црвеном бојом означене су зоне у којима је фон Мизесов напон већи од *R*_e = 315 MPa)

0 - 310 - 290 - 270 - 250 - 230 - 210 - 190 - 170 - 150 - 130 - 110 - 90 - 70 - 50 - 30 - 10 10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 u (mm)

60 40 20

480

460 440

420

Uporedni napon osrednjen po debljini uške na streli rotora (MPa) 400 σ_{VM} 380 δ = 90 mm *R*_e = 315 MPa 360 340 320 300 280 260 240 220 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 u (mm)

Слика 38. Расподела упоредног (фон Мизес) напона у критичном пресеку ушке на стрели ротора

Развијени поступак одређивања параметара статичке стабилности, заснован на примени 3Д модела коригованог резултатима мерења (вагања горње градње), омогућава врло тачну идентификацију оптерећења изазваног сопственом тежином горње градње. Ова чињеница је од изузетног значаја зато што је утицај тежине доминантан у укупном оптерећењу виталних елемената структуре, слике 28-31. Осим тога, тачно одређивање положаја тежишта горње градње је од пресудне важности за век радиаксијалног лежаја (пречник 10 m) којим се она ослања на доњу градњу, као и за њено динамичко понашање. Развијени софтвер омогућава да се на целокупном домену промене угла стреле ротора одреди спектар оптерећења ужета система за вешање стреле ротора, затега стреле ротора и стреле баласта. На основу резултата истраживања применом техничког решења, идентификована су слаба места у конструкцији горње градње.

11. ТЕХНИЧКА ДОКУМЕНТАЦИЈА

У наставку је дат пројекат под називом "Пројекат стабилности горње градње на багеру SchRs 1600 (погонски број 3) на ПК "Тамнава – Западно поље" ", током чије реализације је развијено и примењено техничко решење.

ИНОВАЦИОНИ ЦЕНТАР МАШИНСКОГ ФАКУЛТЕТА

БЕОГРАД, Краљице Марије 16

ПРОЈЕКАТ СТАБИЛНОСТИ ГОРЊЕ ГРАДЊЕ НА БАГЕРУ SchRs 1600 (ПОГОНСКИ БРОЈ 3) НА ПК "ТАМНАВА – ЗАПАДНО ПОЉЕ"

ИНВЕСТИТОР:

ПРИВРЕДНО ДРУШТВО ЗА ПРОИЗВОДЊУ ПРЕРАДУ И ТРАНСПОРТ УГЉА, РУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. - ЛАЗАРЕВАЦ

ИСТРАЖИВАЧКИ ТИМ:

Срђан Бошњак, одговорни пројектант Зоран Петковић Небојша Гњатовић Иван Миленовић Горан Милојевић Александар Стефановић Ненад Зрнић Влада Гашић Милош Ђорђевић

Припремио

Срђан Бошњак

Заступник Иновационог центра Машинског факултета 🖣 роф. др Војкан Лучанин

© Прештампавање и умножавање није дозвољено без одобрења аутора Београд, март 2014. године
САДРЖАЈ

Општи део	0-1
Извод о регистрацији привредног субјекта	0-2
Опис делатности Иновационог центра Машинског факултета	O-6
Решење о одређивању одговорног пројектанта	O-10
Лиценца	0-11
1.0 ПРВА ФАЗА ИСТРАЖИВАЊА: ЗД модел горње градње	1
2.0 ДРУГА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа ЗД модела и Елабората 1	9
2.1 Упоредна анализа резултата друге фазе истраживања	18
3.0 ТРЕЋА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа Елабората 1 и Елабората 2	22
3.1 Положај локалних координатних система и референтних чворова	22
3.2 Масе и положаји средишта маса основних подструктура горње градње	26
3.2.1 Стрела ротора и стуб 1	26
3.2.2 Стуб 2 и стрела баласта	27
3.2.3 Обртна платформа	27
3.3 Пројектована маса, положај тежишта горње градње без баласта и	
маса баласта потребна за његово центрисање	27
3.4 Пројектована маса и положај тежишта горње градње	32
3.5 Пројектовани интензитети сила у ужету и затегама	
стреле ротора од сопствене тежине	34
3.6 Упоредна анализа резултата треће фазе истраживања и	39
4.0 ЧЕТВРТА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа Елабората 1, Елабората 2 и	
резултата мерења	42
4.1 Положај тежишта горње градње са баластом 177,017 t (прво вагање)	43
4.2 Корекција масе горње градње на основу резултата првог вагања	44
4.3 Силе у ужету котураче за промену угла нагиба стреле ротора	46
4.4 Силе у затегама стреле ротора од сопствене тежине	47
4.5 Положај тежишта горње градње са баластом 231,977 t (друго вагање)	48
4.6 Упоредна анализа резултата треће фазе истраживања и	49
4.6.1 Упоредна анализа резултата Мерења 1, Мерења 2 и Мерења 4	52
4.6.2 Упоредна анализа резултата мерења притиска у хидроцилиндрима	
система за подизање стреле ротора (Елаборат 3, Мерење 3 и Мерење 5).	54
5.0 ПЕТА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа Елабората 1, Елабората 2, ЗД	
модела и резултата мерења	55
5.1 Упоредна анализа резултата истраживања I, II, III, IV и V фазе	57
6.0 ШЕСТА ФАЗА ИСТРАЖИВАЊА: Валидација софтвера —	
случај оптерећења Н1b (Елаборат 2)	60
6.1 Упоредна анализа резултата	66

7.0 СЕДМА ФАЗА ИСТРАЖИВАЊА: Случај оптерећења Н1b (3Д модел)	68					
7.1 Положај тежишта	68					
7.2 Сила у ужету од сопствене тежине	69					
7.3 Притисак у хидроцилиндрима система за вешање стреле ротора						
7.4 Силе у затегама од сопствене тежине	71					
7.5 Екстремни интензитети сила у ужету за случај оптерећења H1b (D=0)	73					
7.6 Екстремни интензитети сила у затегама стреле ротора						
за случај оптерећења H1b (<i>D</i> =0)	74					
7.7 Екстремни интензитети сила у затегама стреле баласта						
за случај оптерећења H1b (<i>D</i> =0)	75					
7.8 Упоредна анализа основних параметара багера	76					
7.9 Максималне силе у затегама за случај оптерећења H1b (D≠0)	78					
8.0 ОСМА ФАЗА ИСТРАЖИВАЊА: Анализа утицаја дислокације оса обртања						
четири превојна котура на стубу 2	80					
8.1 Сила у ужету од сопствене тежине	80					
8.2 Притисак у хидроцилиндрима система за вешање стреле ротора	81					
8.3 Силе у затегама од сопствене тежине	82					
8.4 Екстремни интензитети сила у ужету за случај оптерећења H1b (<i>D</i> =0)	84					
8.5 Екстремни интензитети сила у затегама стреле ротора						
за случај оптерећења H1b (<i>D</i> =0)	85					
8.6 Екстремни интензитети сила у затегама стреле баласта						
за случај оптерећења H1b (<i>D</i> =0)	86					
8.7 Максималне силе у затегама за случај оптерећења H1b (D≠0)	87					
8.8 Упоредна анализа резултата VII и VIII фазе истраживања	88					
9.0 ДЕВЕТА ФАЗА ИСТРАЖИВАЊА: Идентификација напонских стања структурних						
елемената горње градње на линији						
мониторинга	90					
9.1 Узајамна валидација коначноелементног и						
аналитичког модела горње градње	92					
9.2 Напонска стања структурних елемената горње градње	0.2					
на линији мониторинга	92					
9.3 Напонско стање носача радијалног лежаја вратила ротора	120					
10.0 ДЕСЕТА ФАЗА ИСТРАЖИВАЊА: ИДентификација напонских стања ушки	121					
за случај оптерелења народни сличини осторећен о состор Илист	121					
10.1 Напонска стања ушки - оптерелења затега круп	121					
	122					
10.1.2. Ушке на стрели ротора	124					
	120					
10.1.4 Ушке на стрели оаласта	128					
	120					
	120					
10.2.2 ушке на стрели ротора	12/					
10.2.5 эшке затеге стреле баласта 10.2.4 Ушке на стрели Баласта	134 126					
	120					
10.3 Упоредна анализа резултата	120					
	129					

ПРИЛОЗИ	П-1
Прилог 1 - "Preliminary Stability Calculation – Revision 1" (Krupp, 05.04. 2007.)	П-2
Прилог 2 - "Final Stability Calculation – Revision 1" (Krupp, 10.09. 2009.)	П-21
Прилог 3 - "Извештај о испитивању вагањем горње обртне градње рударских	
машина" (извештај "Колубара Метал" број 01/10 од 20.01. 2010.)	П-42
Прилог 4 - "Weighing" (Krupp, 29.01. 2010.)	П-45
Прилог 5 - "Извештај о испитивању вагањем горње обртне градње рударских	
машина" (извештај "Колубара Метал" број 02/10 од 01.02. 2010.)	П-60
Прилог 6 - "Final Stability Calculation – Revision 1, Addendum: Modification of	
ballast" (Krupp, од 08.11. 2011.)	П-64
Прилог 7 - "Резултати мерења притисака на mini mess прикључцима на	
хидрауличним цилиндрима за праћење силе у ужадима	
роторног багера SchRs 1600/3x25" (извештај "Колубара Метал",	
30.01. 2010.)	П-69
Прилог 8 - "Извод из извештаја о испитивању вагањем горње обртне градње	
рударских машина"(извештај "Колубара Метал" број 1/14	
од 27.01. 2014.)	П-71
Прилог 9 - Шема поужавања котураче за подизање стреле ротора	
(Krupp, цртеж број 4324042)	П-73
Прилог 10 - Диспозиција мерних места на линији мониторинга	
("TRCpro" d.o.o., достављено елекронском поштом 17.03. 2014.)	П-76
Прилог 11 - Затезне карактеристике материјала од кога су израђене ушке	
(EN 10025)	П-82
Прилог 12 - "Proofs and special provisions for stays of BWB and CWB"	
(Krupp, 30.11. 2007.)	П-84

ОПШТИ ДЕО

ИЗВОД О РЕГИСТРАЦИЈИ ПРИВРЕДНОГ СУБЈЕКТА

	ИЗВОД (РЕГИСТРАЦИЈ привредног субјект 5000014397900	о и А Агенција за привредне рагистре		
Пословис	о име привредног субјекта	ΜϾϾΤΩ		
Назив	INOVACIONI CENTAR MAŠINSKOG FAKULTETA U BEOGRADU	Седиште Београд-Палилула		
		улица и број		
Правна фо	орма Друштво са ограниченом одговорношћу	Краљице Марије 16		
Део пословног имена који ближе означава делатност				
Бр.рег.уло	шка			
Трговинск	и суд			

Матични број	20134798		
Бројеви рачуна	у банкама		
	· · · · · · · · · · · · · · · · · · ·		

Пуно пословно име	INOVACIONI CENTAR MAŠINSKOG FAKULTETA U BEOGRADU DOO BEOGRAD, KRALJICE MARIJE 16
Скраћени назив	

Претежна делатност	
73102	Истраживање и експериментални развој у техничко-технолошким наукама

Датум оснивања	27.02.2006		
Време трајања пр	вредног субјекта: Неограниче	но	

Подаци о капиталу		
Новчани		TOULINIA 3A
износ	датум	AFEHUM PETUCIPE
Уписани 1.000,00 EUR		UDARA CON
износ	датум	26-03
Уплаћени 1.000,00 EUR	27.02.2006	6EOLDAH

Страна 1

полаци о ос	СНИВАЧИМА	- ЧЛАНОВИМА ДРУШТВА		
Подаци о осни	вачу		м	есто и држава
Пословно име	MAŠINSKI FA BEOGRADU	KULTET UNIVERZITETA U	дреса	Београд (град), Србија
			у.	лица и број
Регистарски / Матични број	7032501		μ	Краљице Марије 16
Подаци о капи	талу			
Новчани				
износ		датум		
Уписани 1.000	00 EUR			
износ		датум		
Уплаћени 1.000	0,00 EUR	27.02.2006		

СКРАЋЕНО И/ИЛИ ПОСЛОВНО ИМЕ НА СТРАНОМ ЈЕЗИКУ

Скраћено	о пословно имс привредног субјекта:	место
Назив		 Београд-Палилула
Облик	Друштво са ограниченом одговорношћу	

ПОДАЦИ О ДИРЕКТОРУ И/ИЛИ ЧЛАНОВИМА УПРАВНОГ ОДБОРА

Подаци о дирек	ктору		место и држава
Име и презиме	Александар Седмак	Адреса	Београд-Нови Београд, Србија
			улица и број
ЈМБГ	0205955710143		Стојана Аралице 125
Функција у при	вредном субјекту		TEHIMIA 3A
Дир	ектор		RPHBPEAHE PERNCTPE
ПОДАЦИ О ЗА	СТУПНИЦИМА	·····	2 5 -03- 2009
Застулник			место и држаба ОГРАД

Страна 2

Име и презим	е Војкан Лучанин	Адреса	Београд (град), Србија
			улица и број
IMBE	0308959710028		Париске комуне 51
Функција у пј	ивредном субјекту		
Л	це овлашћено за заступање		
Овлашћења у	промету		
Or	лашћења у унутрашњем промету неогра	ничена	······································
Or	лашћења у спољнотрговинском промету	/ неограничена	
Заступник			место и држава
Име и презим	е Александар Седмак	Адреса	Београд-Нови Београд, Србија
			улица и број
јмбг	0205955710143		Стојана Аралице 125
Функција у пр	ивредном субјекту		
Ди	ректор		
Овлашћења у	промету		
O	лашћења у унутрашњем промету неогра	ничена	
Of	лашћења у спољнотрговинском промету	и неограничена	THUMIA 3A
			APUBPEAHE PEINCTPE

2 6 -03- 2009

БЕОГРАД

Страна 3

ОПИС ДЕЛАТНОСТИ ИНОВАЦИОНОГ ЦЕНТРА МАШИНСКОГ ФАКУЛТЕТА

BITORMATISOTIO
TNOVACTORS

ITETITAP
VENTAT

MATHINEKOF
VENTAT

MATHINEKOF
VENTAT

MARTINEKOF
V

ОПИС ПРЕТЕЖНЕ ДЕЛАТНОСТИ КОЈОМ СЕ БАВИ ДРУШТВО

ИНОВАЦИОНИ ЦЕНТАР МАШИНСКОГ ФАКУЛТЕТА У БЕОГРАДУ, д.о.о.

Грана	Група	Подгрупа	Назив и опис делатности
731	7310		Истраживање и експериментални развој у природним наукама и технолошки развој
731	7310	73102	Истраживање и експериментални развој у техничко-технолошким наукама
731	7310	73105	Истраживање и експериментални развој у мулти-дисциплинарним наукама
731	7310	73109 Обављање истраживан рада у обла механизаци пољопривр возила (тра- машинских термоенерг бродоградн система нас аутоматског постројења индустријск- биомедицин машинства теорије мех сагоревања материјала, трибологије примењене аутоматске средине. Организова	Мулти-дисциплинарним наукама Истраживање и експериментални развој у непоменутим природним наукама основних, примењених,развојних и научних ња ради унапређења образовног и научно-истраживачког истима производног машинства и примене компјутера. је (транспортне,грађевинске и рударске машине) едног машинства, мотора, моторних и прикључних нспортних, радних и специјалних), ефективности система, термотехнике, термомеханике, етике, хидроенергетике, железничког машинства, е, ваздухопловства, војног машинства, оружања и космичке технике процесне технике, у прављања,пројектовања фабрика и фабричких складишних, транспортних и процесних система ог инжењерства, менаџмента, биоинжењерства, еског инжењерства, нанотехнологија, прехрамбеног примењене механике, примењене механике флуида анизама и машина,општих машинских конструкција, , примењене теорије еластичности , погонских машинских материјала, трибологије, заваривања , машинских елемената и конструкција, атематике, физике, електротехнике, обраде података, организације рада и заштите животне ње научно-стручних скупова и семинара,сарадња са
		образовним иностранств	, научним и другим организацијама у земљи и у

Npasange Maprije 16, 11120 Ecorptx 35, Hormanistan (Jax 34 Tex. 011/3370-539). Te seejaase: 011/3370-564 [custos sano, apprintie ca orpanitisema i systetophiloitdh Aremana aa opungesne periocipe fip: 109773/2006, sanosma fip: 20134/98 Tesshu pasyri: 160/252408-34 aos. Kanca Intesa, 00 ona of 16 avros sa 36e ocipa Hopecko riseono[uncannoni fipio] (1116): 104274412 Yuncani sanimax, nonsanin: 1000,00 EUR Yu sahean sanimax, nonsanin: 1000,00 EUR Yu sahean sanimax, nonsanin: 1000,00 EUR

_

HEORABIOTH HEIDAP CLNTAR MATHEROOT PARVARTAAA MAXIMEROOT PARVARTAAA MORRAN HEORAD HEORAD

Обављање наставно образовних и научно-истраживачких делатности ради унапређења науке и сарадње са привредом и другим организацијама у решавању основних примењених научних стручних проблема, израда студија, експертиза и других стручних и научних докумената.

ОПИС ДОПУЊЕНЕ ДЕЛАТНОСТИ ИНОВАЦИОНОГ ЦЕНТРА МАШИНСКОГ ФАКУЛТЕТА У БЕОГРАДУ

i

Група	Подгрупа	Назив и опис делатности
7420	74204 Пројектовањ израда, анал из области м комплетирањ других маши и нултих сери решењима ко или друге нав са другим ори	Остале архитектонске и инжењерске активности и технички савет е машина и индустријских постројења иза и ревизија пројеката и техничке документације ашинства и сродних делатности, израда и е уникатних машина, апарата, уређаја, алата и нских и специјалних производа, као и прототипова ија, по сопственим пројектима и конструкционим оја произилазе из резултата научно-истраживачке ведене делатности и сарадње ганизационим јединицима и заједницама.
7430	74300 Испитивање сер издавање сер моторна вози и процесна п специјална п Услуге, контр заштитних пр услова рада уверења, стр за оруђа за р унапређења Израда експи документаци извршавање	Техничко испитивање и анализа чврстоће и помљивости отификата за бродове, ваздухоплове, моторе, ила, судове под притиском, машинска енергетска остројења, средства наоружања и војне опреме, остројења и опрема наменске производње. осла квалитета и квантитета робе за примену осписа и мера и истраживања ради обогаћивања и безбедности, издавања атеста, одобрења, учних оцена, хомологација, сертификата ода, постројења, уређаја, заштитних направа и машинских конструкција и материјала. ертиза, контрола и нострификација техничке ије, надзор над извођењем машинских система и радионичких услуга.
piqe 16, 1112 0-339, Texer	0 Ecorpaix 35, 1 Iourraness parc: 011/3370-364	n dyas 34
	<u>Група</u> 7420 7430	Група Подгрупа 7420 74204 Пројектовањ израда, анал из области м комплетирањ других маши и нултих сер решењима ко или друге на са другим ор 7430 74300 Испитивање издавање сеј моторна вози и процесна п специјална п Услуге, конт заштитних пр услова рада уверења, стр за оруђа за р унапређења Израда експ- документаци извршавање

Кразиле Марце (1, 11120) сопрах (3) гологладов (3) (3) Гал. 011/3370-339, Те којзакс; 011/3370-364 Геллоч зиње другичко са ограничетом оконоврношфу Ансница за привремсе регистре бр. 109773/2006, малеони (тр. 20134398 Текући разун: 160-252408 М кад Ванса Intesa, Фимпа и Галим ма, без маре Порежи цлетнификациона брог (110115) 104274412 Ушкани каница у повезине: 1.000,00 FUR Упуађени каница у повезине: 1.000,00 FUR Упуађени каница у повезине: 1.000,00 FUR

Кразона, Марије 16, 11120 Београду 35, Понтански фах 34 Гел. 011/3370-339, Техераас: 011/3370-364 Клиоткана учитиче са отраничества годинорношћу меница за привркли се реплетре бр. 109773/2006, матиона бр. 20134598 Гелуји рачит 160-252408-34 илд Валеа Intesa, Физира из Намоху ст. Бе умрт Порески плетификациони број (В1В), 104274452 Унисанска контах, повчани. 1060/015108 Кихијски кантах, повчани. 1060/015108 Бир //www.nas bg.ac.vu

На основу Закона о планирању и изградњи (Службени гласник РС број 47 од 5. маја 2003), а у складу са одредбама из члана 107 овог Закона, доносим следеће

РЕШЕЊЕ

којим се за одговорног пројектанта за реализацију пројекта под називом:

ПРОЈЕКАТ СТАБИЛНОСТИ ГОРЊЕ ГРАДЊЕ НА БАГЕРУ SchRs 1600 (ПОГОНСКИ БРОЈ 3) НА ПК "ТАМНАВА – ЗАПАДНО ПОЉЕ"

ИНВЕСТИТОР:

ПРИВРЕДНО ДРУШТВО ЗА ПРОИЗВОДЊУ, ПРЕРАДУ И ТРАНСПОРТ УГЉА, РУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. - Лазаревац

одређује: проф. др Срђан Бошњак, дипл. инж. маш.

(лиценца бр. 333 0065 03)

Именовани испуњава услове из Закона о планирању и изградњи, а дужан је да се при изради техничке документације придржава Закона о планирању и изградњи.

Доставити:

- Именованом
- Архиви

Заступник Иновационог центра

Машинског факултета

Проф. др Војкан Лучанин

У Београду, јануар 2014. године.

ЛИЦЕНЦА

1.0 ПРВА ФАЗА ИСТРАЖИВАЊА: 3Д модел горње градње

Полазећи од чињенице да оптерећење од сопствене тежине представља доминантни део укупног оптерећења структурних елемената на линији мерења напонских стања, на основу конструкционе документације произвођача (2832 цртежа) формиран је 3Д модел багера, слике 1-5.

Основни параметри горње градње одређени на основу ЗД модела приказани су на сликама 6-8 и презентирани у табели 1.

Табела 1

Параметар	3Д модел		
Укупна маса горње градње без баласта (t)	978,266		
Маса стреле ротора са затегама и стубом 1 (t)	476,119		
Маса стреле баласта са затегама, стубом 2 и обртном платформом (t)	502,147		
Положај стреле ротора	Апсциса тежишта горње градње x7 (mm)		
Поткоп <i>, а_{sr}=</i> —19,52°	-6040		
Хоризонтални <i>, α_{sr}=</i> 0°	-6253		
Горњи, а _{sr} =14,1°	-5573		
Положај стреле ротора	Баласт потребан за центрисање тежишта (t)		
Поткоп, <i>а_{sr}=</i> –19,52°	173,2		
Хоризонтални, $lpha_{\scriptscriptstyle SR}$ =0°	179,3		
Горњи, а _{SR} =14,1°	159,8		
Положај стреле ротора	Сила у ужету за вешање стреле ротора (kN)		
Поткоп, <i>а_{sr}=</i> –19,52°	245,2		
Хоризонтални, α _{sr} =0°	237,2		
Горњи, <i>а_{sr}</i> =14,1°	228,3		

BWE KRUPP SchRs 1600

Слика 1: 3D модел роторног багера KRUPP SchRs 1600

Слика 2: Експандирани 3D модел стреле ротора

Слика 3: Експандирани 3D модел стреле баласта

Слика 4: Експандирани 3D модел доње градње

Слика 5: Експандирани 3D модел гусеничног кретача

Слика 8: Зависност силе у ужету од угла нагиба стреле ротора

2.0 ДРУГА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа 3Д модела и Елабората 1

Друга фаза истраживања обављена је на основу следећих подлога:

- "Preliminary Stability Calculation Revision 1" од 05.04. 2007. године (у даљем тексту: Елаборат 1, Прилог 1);
- 3Д модел.

Да би могла да се изврши упоредна анализа резултата добијених на основу Елабората 1 и ЗД модела, најпре је отклоњена неусаглашеност самог Елабората 1 када је реч о координатама карактеристичних чворова конструције багера и величинама кракова котураче за подизање стреле ротора. На слици 9 приказане су зависности кракова котураче од угла нагиба стреле ротора, док је на слици 10 дат дијаграм промене њихове разлике. Вредности кракова у карактеристичним положајима стреле ротора презентиране су у табели 2. У наставку упоредне анализе, усвојене су величине кракова одређене на основу ЗД модела. На сликама 11 – 16 приказани су дијаграми зависности основних параметара горње градње од угла нагиба стреле ротора, одређених на основу Елабората 1 и ЗД модела.

Табела 2

	Крак силе котураче за подизање стреле ротора (m)				
Положај стреле ротора	Наведен у Е1 (страна А2_26)	Прорачун Е1	3Д	Разлика "ЗД-Е1"	
Поткоп <i>, α_{sr}=</i> −19,52°	19,001	19,289	18,913	-0,377	
Хоризонтални, $lpha_{\it SR}$ =0°	19,912	20,238	19,914	-0,324	
Горњи, <i>а_{sr}=</i> 14,1°	19,476	19,710	19,479	-0,155	

Слика 9: Крак силе котураче за дизање стреле ротора

Слика 10: Разлика кракова силе котураче за подизање стреле ротора одређених на основу 3Д модела и Елабората 1

Слика 11: Пројектована апсциса тежишта горње градње без баласта

Слика 13: Масе баласта потребне за центрисање тежишта горње градње

(максимална разлика 25,9 t)

Слика 15: Силе у ужадима котураче за подизање стреле ротора

Слика 16: Разлика сила у ужадима котураче за подизање стреле ротора

2.1 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА ДРУГЕ ФАЗЕ ИСТРАЖИВАЊА

Упоредни приказ основних параметара горње градње одређених на основу Елабората 1 и

3Д модела дат је у табели 3.

Табела З

Параметар	Елаборат 1	3Д модел	Разлика "ЗД-Е1"
Укупна маса горње градње без баласта (t)	992,162	978,266	–13,896 t
Маса стреле ротора са затегама и стубом 1 (t)	451,395	476,119	24,724 t
Маса стреле баласта са затегама, стубом 2 и обртном платформом (t)	540,767	502,147	-38,620 t
Положај стреле ротора	Апсциса тежишта горње градње без баласта x _T (mm)		
Поткоп, <i>а_{sr}=</i> —19,52°	-5142	-6040	–898 mm
Планум, <i>а_{sr}=</i> —14,6°	-5302	-6221	–919 mm
Хоризонтални, $\alpha_{\scriptscriptstyle SR}$ =0°	-5303	-6253	–950 mm
Горњи, а _{SR} =14,1°	-4636	-5573	–937 mm
	највеће одступа		051
		највеће одступ	ање: –951 mm
Положај стреле ротора	Баласт по центрисање	требан за тежишта (t)	ање: –951 mm
Положај стреле ротора Поткоп, <i>а_{sr}=</i> —19,52°	Баласт по центрисање 148,7	требан за тежишта (t) 173,2	ање: –951 mm 24,5 t
Положај стреле ротора Поткоп, <i>а_{sr}=</i> —19,52° Хоризонтални, <i>а_{sr}=</i> 0°	Баласт по центрисање 148,7 153,4	требан за тежишта (t) 173,2 179,3	ање: —951 mm 24,5 t 25,9 t
Положај стреле ротора Поткоп, α _{sr} =-19,52° Хоризонтални, α _{sr} =0° Горњи, α _{sr} =14,1°	Баласт по центрисање 148,7 153,4 134,1	требан за • тежишта (t) 173,2 179,3 159,8	ање: –951 mm 24,5 t 25,9 t 25,7 t
Положај стреле ротора Поткоп, α _{sr} =-19,52° Хоризонтални, α _{sr} =0° Горњи, α _{sr} =14,1° Максимална вредност	Баласт по центрисање 148,7 153,4 134,1 155,9	требан за • тежишта (t) 173,2 179,3 159,8 181,5	ање: –951 mm 24,5 t 25,9 t 25,7 t 25,6 t
Положај стреле ротора Поткоп, α _{SR} =—19,52° Хоризонтални, α _{SR} =0° Горњи, α _{SR} =14,1° Максимална вредност Положај стреле ротора	Баласт по центрисање 148,7 153,4 134,1 155,9 Сила у ужадим дизање стрел	требан за тежишта (t) 173,2 179,3 159,8 181,5 ма котурача за не ротора (kN)	ање: –951 mm 24,5 t 25,9 t 25,7 t 25,6 t
Положај стреле ротора Поткоп, α _{SR} =—19,52° Хоризонтални, α _{SR} =0° Горњи, α _{SR} =14,1° Максимална вредност Положај стреле ротора Поткоп, α _{SR} =—19,52°	Баласт по центрисање 148,7 153,4 134,1 155,9 Сила у ужадим дизање стрел 234,3	највене одступ требан за тежишта (t) 173,2 179,3 159,8 181,5 ма котурача за те ротора (kN) 245,2	ање: –951 mm 24,5 t 25,9 t 25,7 t 25,6 t 10,9 kN
Положај стреле ротора Поткоп, <i>а</i> _{SR} =-19,52° Хоризонтални, <i>а</i> _{SR} =0° Горњи, <i>а</i> _{SR} =14,1° Максимална вредност Положај стреле ротора Поткоп, <i>а</i> _{SR} =-19,52° Хоризонтални, <i>а</i> _{SR} =0°	Баласт по центрисање 148,7 153,4 134,1 155,9 Сила у ужадим дизање стрел 234,3 225,9	требан за тежишта (t) 173,2 179,3 159,8 181,5 ма котурача за е ротора (kN) 245,2 237,2	ање: –951 mm 24,5 t 25,9 t 25,7 t 25,6 t 10,9 kN 11,3 kN

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

 Маса горње градње према 3Д моделу мања је за ≈13,9 t, уз изразито неповољну дистрибуцију разлике маса основних подструктура, са аспекта положаја тежишта и интензитета силе у ужадима котураче за подизање стреле ротора; наиме, маса стреле ротора са затегама и стубом 1 већа је код 3Д модела за ≈24,7 t, док је маса стреле баласта са затегама, стубом 2 и обртном платформом мања за ≈38,6 t.

- Због знатно неповољнијег односа маса подструктура, апсциса тежишта горње градње без баласта код 3Д модела ближа је ротору за готово 1 m; максимална разлика износи –951 mm, а минимална –898 mm.
- Према Елаборату 1, при хоризонталном положају стреле ротора потребно је 153,4 t баласта (овај резултат је идентичан податку који се наводи у Елаборату 1 на страни A2_32), док је према 3Д моделу потребно 179,3 t баласта.
- 4. Маса баласта потребна за центрисање тежишта горње градње без баласта већа је за ≈25 t код 3Д модела; максимална разлика од 25,9 t јавља се при хоризонталном положају стреле ротора, а минимална разлика од 24,5 t јавља се када је стрела ротора у поткопу.
- 5. Као последица лошије сопствене уравнотежености горње градње, сила у ужету котураче за подизање стреле ротора већа је за ≈11 kN код 3Д модела; максимална разлика од 11,5 kN јавља се у горњем положају стреле ротора, а минимална разлика од 10,9 kN јавља се у доњем положају стреле ротора.

На основу изложеног, закључује се да постоји знатна неусаглашеност подлога: Елабората 1 и цртежа на основу којих је формиран 3Д модел. Она онемогућава добијање резултата коначноелементне анализе који би били валидни са аспекта калибрације система за праћење напонског стања структуре.

Да би се применом методе коначних елемената добили валидни резултати напонско – деформационе анализе, неопходно је отклонити неусаглашености подлога. Типични примери поменуте неусаглашености дати су на сликама 17 и 18.

Слика 17: Неусаглашеност масе погона ротора
BWE KRUPP SchRs 1600

Слика 18: Неусаглашеност масе кабине багеристе

3.0 ТРЕЋА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа Елабората 1 и Елабората 2

Трећа фаза истраживања обављена је на основу следећих подлога:

- "Preliminary Stability Calculation Revision 1" од 05.04. 2007. године (у даљем тексту: Елаборат 1, Прилог 1);
- "Final Stability Calculation Revision 1" од 10.09. 2009. године (у даљем тексту: Елаборат 2, Прилог 2).

Оба елабората израдио је KRUPP.

3.1 ПОЛОЖАЈ ЛОКАЛНИХ КООРДИНАТНИХ СИСТЕМА И РЕФЕРЕНТНИХ ЧВОРОВА

На сликама 19 и 20 приказани су основни структурни елементи багера, положај локалних координатних система и референтних чворова. У табели 4 дат је упоредни приказ координата локалних координатних система у односу на глобални координатни систем.

		Глобалне координате						
Назив		Елабора	Елаборат 1 (стр. А2_15)			Елаборат 2 (стр. АЗ-16)		
		x [m]	y [m]	z [m]	x [m]	y [m]	z [m]	
Зглоб пете стреле ротора	5	-3,878	0,0	15,250	-3,878	0,0	15,250	
Зглоб стуба 1	4	-4,864	0,0	18,984	-4,864	0,0	18,983	
Зглоб стуба 2	11	3,878	0,0	22,450	3,878	0,0	22,330	
Ослонац на врху/центру платформе	16	0,0	0,0	13,400	0,0	0,0	13,400	
Котрљајна стаза куглбана	17	0,0	0,0	11,575	0,0	0,0	11,575	
Ослоне кугле	19	0,0	0,0	3,850	0,0	0,0	3 <i>,</i> 850	
Планум	20	0,0	0,0	0,0	0,0	0,0	0,0	

Та	бела	4
----	------	---

На основу података презентираних у табели 4, очигледно је да постоје разлике у вредностима ордината чворова 4 и 11. Утицај поменутих разлика на крак силе у котурачи механизма за промену угла нагиба стреле ротора, у односу на зглоб пете стреле ротора, приказан је на сликама 21 и 22.

Слика 19: Локални координатни системи (Елаборат 1, страна А2_4)

Bucket wheel excavator

Слика 20: Референтни чворови (Елаборат 1, страна А2_5)

У Елаборату 1 (страна A2_26) и Елаборату 2 (страна A3-27) за карактеристичне положаје стреле ротора наведене су вредности крака котураче које одступају од вредности приказаних на слици 21, табеле 5 и 6.

Табела 5	5
----------	---

Положаі	Крак котураче [m]							
стреле ротора	Израчунат према Е1	Наведен у E1 (с. A2_26)	Разлика	Израчунат према Е2	Наведен у Е2 (с. А3_27)	Разлика		
доњи, а _{sr} =–19,52°	19,289	19,001	0,288 m	19,226	18,909	0,317 m		
хоризонтални, α _{sr} =0°	20,238	19,912	0,326 m	20,220	19,912	0,308 m		
горњи, а _{sr} =13,55°	19,710	19,476	0,234 m	19,820	19,524	0,298 m		

Табела 6

Положај	Крак котураче [m]							
стреле ротора	еле ротора Израчунат Израчунат Разлика према E1 према E2	Разлика	Наведен у E1 (с. A2_26)	Наведен у Е2 (с. А3_27)	Разлика			
доњи, а _{sr} =–19,52°	19,289	19,226	0,063 m	19,001	18,909	0,092		
хоризонтални, α _{sr} =0°	20,238	20,220	0,018 m	19,912	19,912	0,0		
горњи <i>,</i> а _{sr} =13,55°	19,710	19,820	–0,110 m	19,476	19,524	-0,048		

3.2 МАСЕ И ПОЛОЖАЈИ СРЕДИШТА МАСА ОСНОВНИХ ПОДСТРУКТУРА ГОРЊЕ ГРАДЊЕ

3.2.1 Стрела ротора и стуб 1

Упоредни приказ података о маси и положају средишта маса стреле ротора (СР) и стуба 1

(С1) при хоризонталном положају стреле ротора дат је у табели 7.

табела /					
Назив	Елаборат	Maca [t]	<i>x</i> ₁ [m]	<i>y</i> ₁ [m]	z ₁ [m]
СР	Е1 (страна А2_15)	391,459	-26,958	-0,050	0,864
СР	Е2 (страна А3-16)	406,991	-26,693	-0,350	0,931
C1	Е1 (страна А2_15)	59,936	-4,059	0,000	17,398
C1	Е2 (страна А3-16)	60,527	-4,656	0,000	17,624
CP+C1	Е1 (страна А2_15)	451,395	-23,917	-0,043	3,059
CP+C1	Е2 (страна АЗ-16)	467,518	-23,840	-0,305	3,092

Табела 7

3.2.2 Стуб 2 и стрела баласта

Упоредни приказ података о маси и положају средишта маса стуба 2 (C2) и стреле баласта (CБ) дат је у табели 8.

Табела 8

Назив	Елаборат	Maca [t]	<i>x</i> 4 [m]	<i>y</i> 4 [m]	z4 [m]
C2	Е1 (страна А2_15)	75,770	3,879	0,000	21,393
C2	Е2 (страна АЗ-16)	79,364	3,773	-0,219	20,863
СБ	Е1 (страна А2_15)	338,997	20,624	0,000	8,652
СБ	Е2 (страна А3-16)	248,775	26,296	0,050	10,701

3.2.3 Обртна платформа

Упоредни приказ података о маси и положају средишта маса обртне платформе (ОП) дат је у табели 9.

Табела 9

Назив	Елаборат	Maca [t]	<i>x</i> ₅ [m]	<i>y</i> ₅ [m]	z ₅ [m]
ОП	Е1 (страна А2_15)	126,000	0,000	0,000	0,875
ОП	Е2 (страна А3-12)	181,713	0,330	0,000	1,375

3.3 ПРОЈЕКТОВАНА МАСА, ПОЛОЖАЈ ТЕЖИШТА ГОРЊЕ ГРАДЊЕ БЕЗ БАЛАСТА И МАСА БАЛАСТА ПОТРЕБНА ЗА ЊЕГОВО ЦЕНТРИСАЊЕ

Укупна маса горње градње без баласта према Елаборату 1 износи

$$\begin{split} m^{E1}_{GG,B=0} &= m^{E1}_{SR} + m^{E1}_{S1} + m^{E1}_{S2} + m^{E1}_{SB} + m^{E1}_{OP} = \\ &= 391,\!459 + 59,\!936 + 75,\!770 + 338,\!997 + 126,\!0 = 992,\!162 \,\mathrm{t}, \end{split}$$

а према Елаборату 2

$$m_{GG,B=0}^{E2} = m_{SR}^{E2} + m_{S1}^{E2} + m_{S2}^{E2} + m_{SB}^{E2} + m_{OP}^{E2} =$$

= 406,991 + 60,527 + 79,364 + 248,775 + 181,713 = 977,37 t.

Дакле, према Елаборату 2 маса горње градње без баласта мања је за

$$\Delta m_{GG,B=0} = m_{GG,B=0}^{E1} - m_{GG,B=0}^{E2} = 992,162 - 977,37 = 14,792 \text{ t.}$$

Осим разлике у масама, постоји и изузетно је изражена разлика у распореду маса, што условљава релативно велику разлику апсциса средишта маса горње градње без баласта, слике 23 и 24, као и баласта потребног за центрисање њеног тежишта, слике 25 и 26.

Слика 23: Пројектована апсциса тежишта горње градње без баласта

Слика 24: Разлика пројектованих апсциса тежишта горње градње без баласта (максимална разлика 902 mm)

Слика 25: Масе баласта потребне за центрисање тежишта горње градње

(максимална разлика 24,32 t)

3.4 ПРОЈЕКТОВАНА МАСА И ПОЛОЖАЈ ТЕЖИШТА ГОРЊЕ ГРАДЊЕ

Пројектована маса баласта према Елаборату 1 (страна А2_15) износи

 $m_B^{E1} = 197,0$ t,

а према Елаборату 2 (страна А3_16)

 $m_B^{E2} = 221,0$ t.

Маса пројектованог баласта према Елаборату 2 већа је за

 $\Delta m_B = m_B^{E2} - m_B^{E1} = 221,0 - 197,0 = 24,0$ t.

од масе пројектованог баласта према Елаборату 1. Ова бројна вредност је идентична бројној вредности која се очитава на дијаграму приказаном на слици 26 при углу нагиба стреле ротора *α_{SR}*=0°. Дакле, да би се компензовао негативан утицај неповољније расподеле маса подструктура горње градње, и тиме одржао пројектовани положај тежишта, слика 27, било је неопходно да се повећа маса баласта за 12,2%.

Коначно, укупна маса надградње према Елаборату 1 износи

 $m_{GG}^{E1} = m_{GG,B=0}^{E1} + m_B^{E1} = 992,162 + 197,0 = 1189,162 \text{ t},$

а према Елаборату 2

 $m_{GG}^{E2} = m_{GG,B=0}^{E2} + m_{B}^{E2} = 977,37 + 221,0 = 1198,37$ t.

Слика 27: Пројектована апсциса тежишта горње градње

3.5 ПРОЈЕКТОВАНИ ИНТЕНЗИТЕТИ СИЛА У УЖЕТУ И ЗАТЕГАМА СТРЕЛЕ РОТОРА ОД СОПСТВЕНЕ ТЕЖИНЕ

Доминантни утицај на оптерећење ужади и затега стреле ротора има сопствена тежина. У разматраном случају, према Елаборату 2, сила у ужету од сопствене тежине при хоризонталном положају стреле ротора износи 233,2 kN, док утицај номиналне резне силе, као највећи од свих преосталих утицаја, износи 44,8 kN, што чини 19,2 % од утицаја сопствене тежине. Наведена чињеница, као и чињеница да само утицај сопствене тежине није у домену претпоставки, за разлику од свих осталих утицаја, налажу изузетну пажњу приликом идентификације удела сопствене тежине у оптерећењу ужета и затега.

Разлике у масама стреле ротора и стуба 1, као и положају њихових тежишта, условљавају разлике у интензитетима сила у ужету и затегама стреле ротора изазваних сопственом тежином, слике 28-31.

Слика 28: Пројектовани интензитети сила у ужадима

Слика 29: Разлика пројектованих интензитета сила у ужадима

Слика 30: Пројектовани интензитети сила у једној ламели затеге

Слика 31: Разлика пројектованих интензитета сила у једној ламели затеге

3.6 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА ТРЕЋЕ ФАЗЕ ИСТРАЖИВАЊА

Упоредни приказ основних параметара горње градње одређених на основу Елабората 1 и Елабората 2 дат је у табели 10.

абела 10			
Параметар	Елаборат 1	Елаборат 2	Разлика "Е2-Е1"
Укупна маса горње градње (t)	1189,162	1198,370	9,208 t
Маса баласта (t)	197,0	221,0	24,00 t
Маса конструкције горње градње са опремом, без баласта (t)	992,162	977,370	−14,792 t
Маса стреле ротора са затегама и стубом 1 (t)	451,395	467,518	16,123 t
Маса стреле баласта са затегама и стубом 2 (t)	414,767	328,139	-86,628 t
Маса обртне платформе (t)	126,0	181,713	55,713 t
Положај стреле ротора	Апсциса теж	ишта <i>x_т</i> (mm)	
Поткоп, <i>а_{sr}=</i> —19,52°	1392	1370	–22 mm
Планум, α _{sr} =−14,6°	1259	1234	–25 mm
Доњи, <i>α_{sr}=</i> –14,3°	1253	1228	–25 mm
Доњи, <i>а_{sr}=</i> –12,9°	1228	1204	–24 mm
Доњи, <i>а_{sr}=</i> –11,4°	1208	1183	–25 mm
Хоризонтални, <i>а_{sr}=</i> 0°	1258	1238	–20 mm
Горњи, <i>а_{sr}</i> =13,55°	1783	1779	–4 mm
Горњи, <i>а_{sr}</i> =14,1°	1814	1812	–2 mm
Положај стреле ротора	Пројектована апсциса без бала	тежишта горње градње ста (mm)	
Поткоп, <i>а_{sr}=</i> –19,52°	-5142	-6036	–894 mm
Хоризонтални, <i>а_{sr}=</i> 0°	-5303	-6198	- 895 mm
Горњи, <i>а_{sr}</i> =14,1°	-4636	-5494	–858 mm
		највеће одсту	пање: –902 mm
Положај стреле ротора	Сила у у	жету (kN)	
Поткоп, <i>α_{sr}=−</i> 19,52°	234,3	242,1	7,8 kN
Хоризонтални, $\alpha_{\scriptscriptstyle SR}$ =0°	225,9	233,2	7,3 kN
Горњи, <i>а_{sr}</i> =14,1°	216,8	223,7	6,9 kN
Положај стреле ротора	Сила у једној ла	мели затеге (kN)	
Поткоп, <i>а_{sr}=</i> —19,52°	1333	1372	39,0 kN
Хоризонтални, <i>а_{sr}=</i> 0°	1397	1437	40,0 kN
Горњи, <i>α_{sr}</i> =14,1°	1343	1380	37,0 kN
Максимална сила у ламели затеге	1398	1438	40,0 kN

39

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- Укупна маса горње градње према Елаборату 2 већа је за ≈ 9,2 t, док је маса конструкције горње градње са опремом, без баласта, мања за ≈ 14,8 t, уз изразито неповољну дистрибуцију разлике маса основних подструктура, са аспекта положаја тежишта и интензитета силе у ужадима котураче за подизање стреле ротора; наиме, маса стреле ротора са затегама и стубом 1 према Елаборату 2 већа је за ≈ 16,1 t, док је маса обртне платформе већа за ≈ 55,7 t; истовремено, маса стреле баласта са затегама и стубом 2 мања је за ≈ 86,6 t.
- Због знатно неповољнијег односа маса подструктура, апсциса тежишта горње градње без баласта према Елаборату 2 ближа је ротору за готово 1 m; максимална разлика апсциса одређених према Елаборату 2 и Елаборату 1 износи –902 mm, а минимална – 858 mm.
- 3. Маса баласта потребна за центрисање горње градње, израчуната на основу Елабората 2, већа је за ≈24 t; максимална разлика износи 24,32 t, а минимална разлика од 23,3 t јавља се када је стрела ротора у горњем положају.
- Према Елаборату 1, при хоризонталном положају стреле ротора потребно је 153,4 t баласта за центрисање тежишта горње градње, док је према Елаборату 2 потребно 177,5 t баласта, слика 25. Управо за величину разлике маса поменутих баласта (24,1 t≈24 t), слика 26, повећана је маса баласта у Елаборату 2.
- 5. Пројектовани положаји тежишта горње градње су усаглашени, слика 27; максимално одступање од 25 mm јавља се када је стрела ротора у плануму.
- 6. Према Елаборату 1 (страна A2_31) за прорачун чврстоће горње градње меродавна је резерва баласта од 25 t у односу на пројектовану масу баласта од 197,0 t. То значи да је прорачун чврстоће изведен узимајући у обзир масу баласта од 197,0 t +25,0 t =222,0 t; с обзиром на чињеницу да пројектована маса баласта према Елаборату 2 износи 221,0 t, од резерве баласта према Елаборату 1 остаје 1,0 t.
- 7. Као последица лошије сопствене уравнотежености горње градње, сила у ужету котураче за подизање стреле ротора израчуната на основу Елабората 2 већа је за ≈7 kN (максимална разлика од 7,8 kN јавља се када је стрела ротора у поткопу, а минимална разлика од 6,9 kN јавља се у горњем положају стреле ротора); већи интензитет силе у ужету условљава и већи интензитет сила у затегама стреле ротора –

при хоризонталном положају стреле ротора сила у једној ламели затеге већа је за 40 kN, а у горњем положају стреле ротора за 37,0 kN.

На основу изложеног, закључује се да постоји знатна неусаглашеност подлога: Елабората 1 и Елабората 2. Она онемогућава добијање резултата коначноелементне анализе који би били валидни са аспекта калибрације система за праћење напонског стања структуре.

Да би се применом методе коначних елемената добили валидни резултати напонско – деформационе анализе, неопходно је отклонити неусаглашености подлога. Једини пут је упоредна анализа резултата добијених на основу ЗД модела, Елабората 1, Елабората 2 и мерења тежине горње градње и сила у ужадима котураче за подизање стреле ротора.

ЧЕТВРТА ФАЗА ИСТРАЖИВАЊА: 4.0 Упоредна анализа Елабората 1, Елабората 2 и резултата мерења

Четврта фаза истраживања обављена је на основу следећих подлога:

- "Preliminary Stability Calculation Revision 1" од 05.04. 2007. године (у даљем тексту: Елаборат 1, Прилог 1);
- "Final Stability Calculation Revision 1" од 10.09. 2009. године (у даљем тексту: Елаборат 2, Прилог 2);
- "Извештај о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал" број 01/10 од 20.01. 2010 (у даљем тексту: Мерење 1, Прилог 3);
- "Weighing" од 29.01. 2010. године (у даљем тексту: Елаборат 3, Прилог 4);
- "Извештај о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал" број 02/10 од 01.02. 2010. (у даљем тексту: Мерење 2, Прилог 5);
- "Final Stability Calculation Revision 1, Addendum: Modification of ballast" од 08.11.
 2011. (у даљем тексту: Елаборат 4, Прилог 6);
- "Резултати мерења притисака на mini mess прикључцима на хидрауличним цилиндрима за праћење силе у ужадима роторног багера SchRs 1600/3x25" од 30.01. 2010. (у даљем тексту: Мерење 3, Прилог 7);
- "Извод из извештаја о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал" број 1/14 од 27.01. 2014. године (у даљем тексту: Мерење 4, Прилог 8);
- Интерни извештај о мерењу притисака у хидроцилиндрима система за подизање стреле ротора (у даљем тексту: **Мерење 5**).

4.1 ПОЛОЖАЈ ТЕЖИШТА ГОРЊЕ ГРАДЊЕ СА БАЛАСТОМ 177,017 t (ПРВО ВАГАЊЕ)

Према Елаборату 3 (Прилог 4, "Protokol for Counterweght", лист 7) маса баласта приликом првог вагања износила је m_{B1} =177,017 t. Дијаграми промене апсциса тежишта горње градње при тој маси баласта приказани су на слици 32. Осим тога, на истој слици приказани су и резултати добијени првим вагањем 20.01. 2010. (Мерење 1). Вредности апсциса тежишта за карактеристичне положаје стреле ротора презентиране су у табели 11.

табела т.

Положај стреле тотора	E1	L E2 Вагање		Одступање [mm]		
	<i>x_{T,E1}</i> [mm]	nm] x _{T,E2} [mm] x _{T,V} [mm] x _{T,V}		X _{T,V} — X _{T,E1}	Х _{Т,V} —Х _{Т,Е2}	
планум, а _{sr} =—12,9°	663	-51	-398	-1061	-347	
хоризонтални, α _{sr} =0°	693	-15	-356	-1049	-341	
горњи, а _{sr} =14,1°	1259	581	249	-1010	-332	

4.2 КОРЕКЦИЈА МАСЕ ГОРЊЕ ГРАДЊЕ НА ОСНОВУ РЕЗУЛТАТА ПРВОГ ВАГАЊА

На основу резултата првог вагања извршена је корекција модела горње градње према Елаборату 2 и додата маса

 $\Delta m_{GG}^{E2} = 17,788 \text{ t},$

са средиштем у тачки чије су координате у односу на координатни систем $x_1y_1z_1$ везан за зглоб пете стреле ротора:

 $x_{1 \Delta m} = -18347,8$ mm,

 $y_{1\Delta m} = -162,1$ mm,

 $z_{1\Delta m} = 3429 \text{ mm.}$

Маса тако коригованог модела горње градње једнака је средњој маси горње градње утврђеној на основу резултата првог вагања. Дијаграм промене апсцисе тежишта коригованог модела горње градње и резултати вагања приказани су на слици 33. Упоредни приказ аналитички и експериментално одређених координата тежишта горње градње у карактеристичним положајима стреле ротора дат је у табели 12.

Слика 33: Апсцисе тежишта коригованог модела горње градње према E2 са баластом 177,017 t (црвеним маркерима означени су резултати мерења)

Табела 12

	Апсциса тежишта (mm)							
Положај стреле	Е2, коригована маса			Вагање		Одступање		
poropa	XT	ут	ZT	X _{T,V}	y <i>t</i> , <i>v</i>	$ x_{T,V}-x_T $	ly _{⊤,∨} –y _⊤ l	
доњи, а _{sr} =—12,9°	-391,8	-123,4	6518,6	-398	-121	6,2	2,4	
хоризонтални, α _{sr} =0°	-351,9	-123,4	8736,0	-356	-125	4,1	1,6	
горњи, а _{sr} =14,1°	256,1	-123,4	11081,5	249	-118	7,1	5,4	

4.3 СИЛЕ У УЖЕТУ КОТУРАЧЕ ЗА ПРОМЕНУ УГЛА НАГИБА СТРЕЛЕ РОТОРА

Дијаграми промене сила у ужадима котураче за промену угла нагиба стреле ротора приказани су на слици 34. Њихови интензитети у карактеристичним положајима стреле ротора дати су у табели 14.

Слика 34: Сила у ужету котураче за промену угла нагиба стреле ротора

Табела 13											
Положај	Сила (kN) у ужету котураче за промену угла нагиба стреле ротора ¹⁾										
стреле ротора	E1	E2	E2,кор ²⁾	"Е2,кор–Е1"	"Е2,кор–Е2"						
доњи <i>,</i> а _{sr} =–19,52°	234,3	242,1	249,3	15,0	7,2						
хоризонтални, α _{sr} =0°	225,9	233,2	240,0	14,1	6,8						
горњи, α _{sr} =14,1°	216,8	223,7	230,2	13,4	6,5						

¹⁾3a *g*=10 m/s²

²⁾Елаборат 2 са корекцијом масе стреле ротора

4.4 СИЛЕ У ЗАТЕГАМА СТРЕЛЕ РОТОРА ОД СОПСТВЕНЕ ТЕЖИНЕ

Дијаграми промене сила у затегама стреле ротора приказани су на слици 35. Њихови интензитети у карактеристичним положајима стреле ротора дати су у табели 14. У истој табели презентирани су и њихови максимални интензитети.

Слика 35: Силе у затегама стреле ротора (по једној ламели затеге)

Табела 14											
Положај	Сила (kN) у затези стреле ротора (по једној ламели затеге) ¹⁾										
стреле ротора	E1	E2	Е 2, кор ²⁾	"Е2,кор–Е1"	"Е2,кор–Е2"						
доњи, а _{sr} =–19,52°	1333	1372	1415	82	43						
хоризонтални, α _{sr} =0°	1397	1437	1480	83	43						
горњи, а _{sr} =14,1°	1343	1380	1420	77	40						
максимум	1398	1438	1481	83	43						

¹⁾3a *g*=10 m/s²

²⁾Елаборат 2 са корекцијом масе стреле ротора

4.5 ПОЛОЖАЈ ТЕЖИШТА ГОРЊЕ ГРАДЊЕ СА БАЛАСТОМ 231,977 t (ДРУГО ВАГАЊЕ)

Према Мерњу 2 (Прилог 5, страна 2), пре вагања убачено је 54,96 t баласта. Дакле укупна маса баласта приликом дугог вагања износила је $m_{B2}=m_{B1}+54,96=177,017+54,96=231,977$ t. Дијаграм промене апсцисе тежишта горње градње при тој маси баласта приказан је на слици 36. Осим тога, на истој слици приказан је и резултат добијен другим вагањем. Вредности апсциса тежишта за карактеристичне положаје стреле ротора презентиране су у табели 15.

Слика 36: Апсцисе тежишта горње градње са баластом 231,977 t

Положај стреле ротора	E1	E2	M2	Од	m]	
	<i>x_{T,E1}</i> (mm)	<i>x_{T,E2}</i> (mm)	<i>x_{T,V}</i> (mm)	Х Т,Е2 —Х Т,Е1	X T,V X T,E1	X T,V X T,E2
доњи <i>, а_{sr}=</i> –19,52°	2332	1667		-665	_	_
планум, а _{sr} =—11,4°	2153	1482	1087	-671	-1066	-395
хоризонтални, α _{sr} =0°	2202	1537	_	-665	_	_
горњи, а _{sr} =14,1°	2743	2105	_	-638	_	_

Табела 15

Дијаграм зависности апсцисе тежишта горње градње према Елаборату 2 са коригованом масом стреле ротора и 231,977 t баласта приказан је на слици 37. На истој слици приказан је и резултат добијен другим вагањем. Вредности апсциса тежишта за карактеристичне положаје стреле ротора презентиране су у табели 16.

Табела 16

Положај стреле тотора	Е2,кор	Мерење 2	Одступање (mm)		
	<i>x_{T,E2cor}</i> (mm)	<i>x_{T,V}</i> (mm)	X _{T,V} — X _{T,E2cor}		
доњи, а _{sr} =–19,52°	1319	-	-		
планум, а _{sr} =—11,4°	1134	1087	-47		
хоризонтални, α _{sr} =0°	1192	-	-		
горњи, <i>а_{sr}</i> =14,1°	1773	-	_		

4.6 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА ЧЕТВРТЕ ФАЗЕ ИСТРАЖИВАЊА

Упоредни приказ основних параметара горње градње одређених на основу Елабората 1, Елабората 2, Елабората 3, Мерења 1 и Мерења 2 дат је у табели 17. На основу презентираних резултата закључује се да модел формиран према Елаборату 2, уз корекцију масе према резултатима Мерења 1, даје најбољу апроксимацију апсцисе тежишта горње градње. Истовремено, у односу на Елаборат 1 и Елаборат 2, максимални интензит силе у ужету котураче система за подизање стреле ротора већи је за 15 kN и 7,2 kN, респективно. Када је реч о максималној сили у једној ламели затеге стреле ротора, посматране разлике износе 83 kN, односно 43 kN.

Слика 37: Апсцисе тежишта горње градње према Елаборату 2 са коригованом масом стреле ротора и 231,977 t баласта

Табела 17

в		E1 ¹⁾			E2 ²⁾		M1 (баласт 177	,017 t)	995,2	E2+∆ <i>m_{sr}=</i> 246–977,37	=17,8 t		E2			E2+∆ <i>m</i> _{sr}		M2 (6	баласт 231,	977 t)
ај ст тора	МКГГ ³⁾	МБ ⁴⁾	УМГГ ⁵⁾	ΜΚΓΓ	МБ	УМГГ	ΜΚΓΓ	МБ	УМГГ	МКГГ	МБ	УМГГ	МКГГ	МБ	УМГГ	МКГГ	МБ	УМГГ	ΜΚΓΓ ⁶⁾	МБ	УМГГ ⁶⁾
жого	992,162	177,017	1169,179	977,37	177,017	1154,387	995,246	177,017	1172,263	995,246	177,017	1172,263	977,37	231,977	1209,347	995,246	231,977	1227,223	1001,795	231,977	1233,772
Пс										Апсци	са тежишта	n <i>x</i> ⊤ (mm)					·				
поткоп <i>а_{sr}=</i> -19,52°		829			122						-219			1667			1319				
планум <i>а_{sr}=</i> —14,6°		694			-19						-360			1533			1185				
доњи <i>а_{sr}=</i> —12,9°		663			-51			-398			-392										
доњи <i>а_{sr}=</i> —11,4°														1482			1134			1087	
хоризон. <i>а_{sr}=</i> 0°		693			-15			-356			-352			1537			1192				
горњи <i>а_{sr}=</i> 13,55°		1227			547						222			2073			1740				
горњи <i>а_{sr}=</i> 14,1°		1259			581			249			256			2105			1773				
Положај СР										Си	ла у ужету (kN) ⁷⁾									
поткоп <i>а_{sr}=</i> —19,52°		234,3			242,1						249,3										
хоризон. <i>а_{sr}=</i> 0°		225,9			233,2						240,0										
горњи <i>а_{sr}=</i> 14,1°		216,8			223,7						230,2										
Положај СР									Сила у	/ једној лам	ели затеге с	треле ротор	a (kN) ⁷⁾								
поткоп <i>а_{sr}=</i> —19,52°		1333			1372						1415										
хоризон. α _{sr} =0°		1397			1437						1480										
горњи <i>а_{sr}=14,1</i> °		1343			1380						1420										
максимум		1398			1438						1481										

¹⁾ Пројектована маса баласта 197 t

²⁾ Пројектована маса баласта 221 t

³⁾ **М**аса Конструкције Горње Градње са опремом (t)

⁴⁾ **М**аса **Б**аласта (t)

⁵⁾ **У**купна **М**аса Горње Градње (t)

⁶⁾ Према Мерењу 2 (Прилог 5, страна 2), на горњој градњи се током испитивања налазило ≈ 1,24 t страних тела; осим тога, у извесној мери, горња градња је била оптерећена и снегом ⁷⁾ За *g*=10 m/s²

4.6.1 Упоредна анализа резултата Мерења 1, Мерења 2 и Мерења 4

Упоредни приказ резултата Мерења 1 (Прилог 3), Мерења 2 (Прилог 5) и Мерења 4 (Прилог 8) дат је у табели 18.

Параметар	M1	M2	M4 ⁴⁾	"M2-M1"	"M4-M1"	"M4-M2"
УМГГ ¹⁾ (t)	1172,263	1233,772	1321,025	61,509	148,787	87,278
МБ (t) ²⁾	177,017	231,977	237,983	54,960	60,966	6,006
ΜΚΓΓ ³⁾ (t)	995,246	1001,795	1083,042	6,549	87,796	81,247

¹⁾ Укупна Маса Горње Градње

²⁾ Маса Баласта

³⁾ Маса Конструкције Горње Градње са опремом

⁴⁾ Према Мерењу 2, на горњој градњи се током испитивања налазило ≈ 1,24 t страних тела; осим тога, у извесној мери, горња градња је била оптерећена и снегом

На основу резултата Мерења 1, утврђено је да у односу на Елаборат 2 постоји вишак масе (<u>неидентификованог порекла</u>) конструкције горње градње без баласта од

$$\Delta m_{GG}^{E2} = 17,788 \, \mathrm{t}$$

на страни стреле ротора (страна 44 овог извештаја). Осим тога, у Елаборату 4 (Прилог 6) наводи се да је на стрели ротора накнадно уграђено 6,569 t, а на стрели баласта 0,866 t, односно, укупно

 $\Delta m_{GG}^{E4} = 7,435$ t.

Дакле, на основу Мерења 1 и Елабората 4 закључује се да постоји <u>"познати"</u> вишак масе конструкције горње градње без баласта од

 $\Delta m_{GG}^{E2+E4} = 17,788 + 7,435 = 25,235 \, \mathrm{t} \approx 25,3 \, \mathrm{t}.$

Према Елаборату 2 укупна маса горње градње без баласта износи

$$m_{GG,B=0}^{E2} = 977,37$$
 t,

а на основу резултата Мерења 4 њена маса је

 $m_{GG,B=0}^{M4} = 1083,042$ t.

Разлика маса горње градње без баласта одређених на основу Мерења 4 и Елабората 2 износи

$$\Delta m_{GG}^{M4-E2} = m_{GG,B=0}^{M4} - m_{GG,B=0}^{E2} = 1083,042 - 977,37 = 105,672 \text{ t} \approx 105,7 \text{ t}.$$

Када се од ње одузме <u>"познати"</u> вишак масе, закључује се да је према Мерењу 4 маса горње градње без баласта већа за

$$\Delta m_{GG} = m_{GG,B=0}^{M4-E2} - \Delta m_{GG}^{E2+E4} = 105,7 - 25,3 = 80,4 \text{ t}$$

<u>непознатог</u> порекла, која је условила недопустиво одступање апсцисе тежишта у односу на пројектовано стање, слика 38, табела 19.

Слика 38: Апсцисе тежишта горње градње израчунате према Елаборату 2 са 237,983 t баласта (маса баласта при Мерењу 4) и израчунате на основу Мерења 4

Положај стреле ротора	E2 са 237,983 t баласта	M4	Одступање (mm)	
	<i>x_{T,E2}</i> (mm)	<i>x_{T,V}</i> (mm)	X _{T,V} —X _{T,E2}	
доњи, а _{sr} =–19,52°	1827	-	-	
планум, а _{sr} =—11,4°	1643	-263	-1906	
хоризонтални, α _{sr} =0°	1698	-245	-1943	
горњи, <i>а_{sr}</i> =14,1°	2264	-	_	

Табела 19

4.6.2 Упоредна анализа резултата мерења притиска у хидроцилиндрима система за подизање стреле ротора (Елаборат 3, Мерење 3 и Мерење 5)

Упоредни приказ резултата мерења притисака у хидроцилиндрима система за подизање стреле ротора дат је у табели 20. Уочавају се знатна одступања притисака у карактеристичним положајима стреле ротора и, сагласно томе, знатна одступања интензитета сила у ужадима.

На основу презентираних података, закључује се да подаци о измереним вредностима притисака нису довољно поуздани за валидну коначноелементну идентификацију структуре надградње.

E31) M5²⁾ M3 Положај СР *p*_{sr} (bar) F_u (kN) p_{sr} (bar) F_u (kN) *p*_{sr} (bar) F_u (kN) **П**⁴⁾ KM³⁾ KΜ 240,8 доњи, *а_{sr}=*-12,9° 106,5 _ 115,0 109,0 260,1 планум, *α_{sr}=*-11,4° _ _ 86,25 195,1 _ _ _ хоризонтални, $\alpha_{SR}=0^{\circ}$ 103,1 233,2 108,0 _ _ 111,5 252,2 99,6 225,2 горњи, *а*_{SR}=10,7° 110,0 109,0 248,8 _

Табела 20

¹⁾У испитне листове нису уписане измерене вредности притисака већ прорачунске ²⁾Не постоји тачан податак у углу нагиба стреле ротора при мерењу у доњем и горњем

положају

³⁾Контролни манометри

⁴⁾"Паркери"

П

246,6

244,3

246.6

ПЕТА ФАЗА ИСТРАЖИВАЊА: Упоредна анализа Елабората 1, Елабората 2, ЗД модела и резултата мерења 5.0

Резултати Мерења 4 знатно одступају у односу на резултате Мерења 1 и Мерења 2, табела 18. Зато су као основа за наставак анализе усвојени резултати Мерења 1 и Мерења 2, као и 3Д модел развијен током прве етапе истраживања (слике 1-5).

Корекција масе 3Д модела извршена је на основу резултата Мерења 1, табела 21.

Табела 21

Положај СР ¹⁾	Укупна тежина <i>G</i> (kN)			Апсци	са тежишта	a <i>x</i> ⊤ (m)	<i>G x</i> ₇ (kNm)			
	ЗД	M1	'М1-3Д'	ЗД	M1	'М1-3Д'	ЗД	M1	'М1-3Д'	
1	11333,3	11501,1	167,8	-0,066	-0,356	-0,290	-751,8	-4094,4	-3342,6	
2	11333,3	11499,2	165,9	-0,075	-0,398	-0,323	-851,3	-4576,7	-3725,4	
3	11333,3	11499,4	166,1	0,509	0,249	-0,260	5770,2	2863,4	-2906,8	

¹⁾Положај 1: СР хоризонтална

Положај 2: СР у доњем положају под углом α_{SR} =-12,9° Положај 3: СР у горњем положају под углом $\alpha_{SR}=14,1^{\circ}$

На основу упоредне анализе резултата, табела 21, закључује се да је 3Д модел лакши за

$$\Delta G_{GG}^{3D} = \frac{1}{3} \sum_{p=1}^{3} (G_p^{M1} - G_p^{3D}) = \frac{1}{3} (167,8 + 165,9 + 166,1) = 166,6 \text{ kN},$$

односно, да масу 3Д модела теба увећати за

$$\Delta m_{GG}^{3D} = \frac{\Delta G_{GG}^{3D}}{g} = \frac{166,6}{9,81} = 16,98 \,\mathrm{t}.$$

Апсциса средишта корективне масе горње градње 3Д модела у односу на координатни систем $x_1y_1z_1$ везан за зглоб пете стреле ротора одређује се на основу израза:

$$x_{1\Delta m}^{3D} = \frac{G_1^{M1} x_{T1}^{M1} - G_1^{3D} x_{T1}^{3D}}{\Delta G_{GG}^{3D}} + 3,878 =$$

= $\frac{11501,1 \times (-0,356) - 11333,3 \times (-0,066)}{166,6} + 3,878 = -16,189 \text{ m}.$

Да би се формирао модел који истовремено даје добре апроксимације апсцисе тежишта горње градње у мерном доњем (2) и горњем положају (3), неопходно је збир апликата средишта корективне масе одређених на основу резултата Мерења 1 кориговати фактором k=0,4967, слика 39. При тој вредности фактора k, апсолутне вредности одступања апсцисе тежишта мање су од 6 mm, слика 40, табела 22.

Слика 39: Зависност одступања апсцисе тежишта од фактора корекције апликата

Апсь Положај стреле ЗД, коригована маса	Апсциса тежишта (mm)					
	Вага	Вагање		Одступање		
ротора ¹⁾	X T3D	У тзD	X _{T,V}	y <i>y</i>	X _{T,V} —X _{T3D}	у т, v—у тзо
1	-356,0	-121,4	-356	-125	0	-3,6
2	-392,3	-121,4	-398	-121	-5,7	0,4
3	254,7	-121,4	249	-118	-5,7	3,4

¹⁾Положај 1: СР хоризонтална

Положај 2: СР у доњем положају под углом α_{SR} =-12,9°

Положај 3: СР у горњем положају под углом *а*_{SR}=14,1°

5.1 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА ИСТРАЖИВАЊА I, II, III, IV И V ФАЗЕ

Упоредни прикази основних карактеристика горње градње са 177,017 t баласта (маса баласта при Мерењу 1) дати су на сликама 41-44 и у табели 23. На основу презентираних резултата, закључује се да 3Д модел са коригованом масом даје набоље приближење резултатима Мерења 1. Управо зато он се усваја као основа за наставак анализе и идентификацију напонско – деформационог стања структуре горње градње.

Табела	23
ruocnu	20

Параметар	E1	E2	Е2,кор	ЗД	3Д,кор	M1
Укупна маса горње градње (t)	1169,179	1154,387	1172,263	1155,283	1172,263	1172,263
Маса баласта (t)	177,017	177,017	177,017	177,017	177,017	177,017
Маса горње градње без баласта (t)	992,162	977,370	995,246	978,266	995,246	995,246
Положај стреле ротора			Апсциса теж	ишта <i>x_T</i> (mm)		
Поткоп, <i>а_{sr}=</i> —19,52°	829	122	-219	114	-215	-
Доњи, а _{sr} =–12,9°	663	-51	-392	-75	-392	-398
Хоризонтални, а _{sr} =0°	693	-15	-352	-66	-356	-356
Горњи, а _{sr} =14,1°	1259	581	256	509	255	249
Положај стреле ротора	Сила у ужету (kN) ¹⁾					
Поткоп, <i>α_{sr}=−</i> 19,52°	234,3	242,1	249,3	245,2	252,2	_
Хоризонтални, α _{sr} =0°	225,9	233,2	240,0	237,2	242,9	_
Горњи, а _{sr} =14,1°	216,8	223,7	230,2	228,3	233,1	_
Положај стреле ротора	Сила у једној ламели затеге (kN) ¹⁾					
Поткоп, <i>α₅</i> =−19,52°	1333	1372	1415	1393	1435	_
Хоризонтални, <i>а_{sr}=</i> 0°	1397	1437	1480	1462	1499	-
Горњи, <i>α_{sr}</i> =14,1°	1343	1380	1420	1407	1437	_

¹⁾3a g=10 m/s²

Слика 43: Сила у ужету котураче за промену угла нагиба стреле ротора (од сопствене тежине)

6.0 ШЕСТА ФАЗА ИСТРАЖИВАЊА: Валидација софтвера - случај оптерећења H1b (Елаборат 2)

Шеста фаза истраживања посвећена је анализи оптерећења роторног багера у нормалном раду — случај оптерећења H1b према DIN 22261-2. Да би се извршила идентификација оптерећења у целокупном дијапазону промене угла нагиба стреле ротора, развијен је софтвер чија је валидација извршена на основу резултата добијених за улазне податке преузете из Елабората 2, табела 24. Применом поменутог софтвера одређени су карактери промене референтних оптерећења система за вешање стреле ротора (затеге стреле ротора, ужад котураче за промену угла нагиба стреле ротора и затеге стреле баласта) слике 45-54.

Табела 24

Оптерећење	Ознака	Интензитет (kN)
Сопствена тежина	Ε	11983,7 ¹⁾
Транспортовани материјал	F1	376,1
Кора	V	
трака 1	V1	37,6
ротор	VO	196,6
Нагиб (5,0 %)	Ν	
сопствена тежина	N _E	599,2
транспортовани материјал	N _{F1}	18,8
кора на траци 1	N _{V1}	1,9
кора на ротору	N _{VO}	9,8
Номинална резна сила	U	
напред	U _F	505,1
доле	UL	505,1
Динамички утицаји ²⁾	D	0

¹⁾3a g=10 m/s²

²⁾Динамички утицаји у Елаборату 2 нису узети у обзир, зато што се прорачун односи на статичку стабилност – стабилност против претурања

60

Слика 46: Сила у ужету од V0 и V1

Слика 51: Максимална сила у затези стреле ротора за случај оптерећења H1b (за D=0)

Слика 52: Минимална сила у затези стреле ротора за случај оптерећења H1b (за D=0)

Слика 53: Максимална сила у затези стреле баласта за случај оптерећења H1b (за D=0)

Слика 54: Минимална сила у затези стреле баласта за случај оптерећења H1b (за D=0)

6.1 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА

Упоредни преглед резултата презентираних у Елаборату 2 (Прилог 2) и резултата добијених применом развијеног софтвера приказан је у табелама 25 и 26.

Табела 25

Оптерећење		Сила у ужету (kN)					
		<i>α_{sr}=</i> –19,52°		$\alpha_{SR}=0^{\circ}$		<i>α_{sr}</i> =13,547°	
		E2	Софтвер	E2	Софтвер	E2	Софтвер
Сопствена	тежина (Е)	242,1	242,1	233,2	233,2	233,8	223,8
Номинална сила — напр	а резна ред (U _F)	44,8	44,9	44,8	44,8	44,6	44,6
Номинална сила – доле	а резна е (U _L)	20,3	20,3	6,5	6,5	-2,6	-2,6
Тежина на траци 1	материјала (F ₁)	14,4	14,4	14,3	14,3	14,0	14,0
Кора на тра	аци 1 (V ₁)	1,4	1,4	1,4	1,4	1,4	1,4
Кора на рот	тору (V ₀)	14,8	14,8	14,9	14,9	14,8	14,8
	NE	2,6	2,6	-1,5	-1,5	-4,3	-4,3
Нагиб (N)	N _{F1}	0,2	0,2	0	0	-0,2	-0,2
	N _{V1}	0	0	0	0	0	0
	N _{V0}	0,3	0,3	0	0	-0,2	-0,2

Табела 26

Случај оптерећења Н1b				
Величина	E2	Софтвер		
Максимална сила у ужету (kN)	320,8	320,7		
Минимална сила у ужету (kN)	217,0	217,0		
Максимална сила у затези стреле ротора (kN)	3832,5	3833,0		
Минимална сила у затези стреле ротора (kN)	2698,0	2697,8		
Максимална сила у затези стреле баласта (kN)	3627,3	3627,1		
Минимална сила у затези стреле баласта (kN)	2485,4	2485,5		

На основу упоредне анализе података приказаних у табелама 25 и 26 закључује се да развијени софтвер, који ће се користити у даљим анализама, даје резултате који су у карактеристичним положајима стреле ротора идентични резултатима наведеним у Елаборату 2. Презентирана анализа изведена је за случај да је при хоризонталном положају стреле ротора апликата средишта ротора (15,25 m) једнака апликати зглоба пете стреле ротора, како је наведено у Елаборату 2 на страни 2.1 документа "A3_EPS 3092 BWE_Final stability.stb, Rev. 0, 02 Oct. 2008". Међутим, у Елаборату 2 на страни A3-7 документа "A3_EPS 3092 BWE_LU_Final stability.xls" стоји да апликата средишта ротора у односу на координатни систем везан за зглоб пете стреле ротора износи 360 mm (при хоризонталном положају стреле ротора) што одговара и конструкционој документацији произвођача. Коначно, развијени софтвер омогућава идентификацију оптерећења разматраних елемената структуре горње градње (ужад, затеге) у целокупном дијапазону промене угла нагиба стреле ротора, за разлику од прорачуна презентираног у Елаборату 2. То омогућава одређивање екстремних вредности оптерећења које се у извесној мери разликују од оптерећења при карактеристичним положајима стреле ротора – слика 53.

7.0СЕДМА ФАЗА ИСТРАЖИВАЊА:7.0Случај оптерећења Н1b (3Д модел)

Седма фаза истраживања посвећена је одређивању основних параметара багера и анализи оптерећења структурних елемената за вешање стреле ротора (ужад, затеге стреле ротора и баласта) роторног багера у нормалном раду – случај оптерећења H1b према DIN 22261-2, сагласно табели 24. Осим тога, одређени су и максимални интензитети сила у затегама стреле ротора и стреле баласта узимајући у обзир и динамичке ефекте. Истраживање је изведено за 3Д модел са коригованом масом, масом након реконструкције (Прилог 6) и масом баласта 237,983 t (Прилог 4, Прилог 5 и Прилог 6).

7.1 ПОЛОЖАЈ ТЕЖИШТА

Зависност апсцисе тежишта од угла нагиба стреле ротора приказана је на слици 55, а њене вредности у карактеристичним положајима приказане су у табели 27.

Слика 55: Апсциса тежишта (маса баласта 237,983 t)

Положај стреле ротора	Апсциса тежишта <i>хт</i> (mm)
доњи, а _{sr} =–19,52°	1312
хоризонтални, а _{sr} =0°	1177
горњи, <i>а_{sr}=</i> 14,1°	1765

7.2 СИЛА У УЖЕТУ ОД СОПСТВЕНЕ ТЕЖИНЕ

Зависност оптерећења ужета изазваног сопственом тежином (стреле ротора, затега стреле ротора и стуба 1) од угла нагиба стреле ротора приказана је на слици 56. Интензитети силе у ужету за карактеристичне положаје стреле ротора приказани су у табели 28.

Слика 56: Сила у ужету од тежине стреле ротора, затега стреле ротора и стуба 1

Табела 28

Положај стреле ротора	Сила у ужету <i>F_{uE}</i> (kN) ¹⁾
доњи, а _{sr} =–19,52°	256,6
<i>α_{SR}=</i> -15°	255,8
α_{SR} =-10°	253,9
α_{SR} =-5°	250,9
хоризонтални, а _{sr} =0°	247,2
горњи, а _{sr} =5°	243,0
$\alpha_{SR}=10^{\circ}$	239,1
горњи, а _{sr} =14,1°	237,1
$1)22 - (-10) m/c^2$	

¹⁾3a *g*=10 m/s²

7.3 ПРИТИСАК У ХИДРОЦИЛИНДРИМА СИСТЕМА ЗА ВЕШАЊЕ СТРЕЛЕ РОТОРА

Зависност притиска у хидроцилиндрима система за вешање стреле ротора од њеног положаја приказана је на слици 57 и у табели 29. У обзир су узети утицаји сопствене тежине стреле ротора, затега стреле ротора и стуба 1, док је утицај губитака у котуровима занемарен (η_{κ} =1).

Слика 57: Притисак у хидроцилиндрима система за вешање стреле ротора за случај дејства сопствене тежине стреле ротора, затега стреле ротора и стуба 1 (за *g*=9,81 m/s² и *η_K*=1)

Табела 29	
Положај стреле ротора	Притисак p_{E} (bar) $^{1)}$
доњи, а _{sr} =–19,52°	111,3
α_{SR} =-15°	111,0
α_{SR} =-10°	110,1
α_{SR} =-5°	108,8
хоризонтални, α _{sr} =0°	107,2
горњи <i>, а_{sr}=</i> 5°	105,4
<i>α_{SR}</i> =10°	103,7
горњи, а _{sr} =14,1°	102,8

¹⁾За g=9,81 m/s² и η_{κ} =1

7.4 СИЛЕ У ЗАТЕГАМА ОД СОПСТВЕНЕ ТЕЖИНЕ

Зависност оптерећења затега стреле ротора и стреле баласта изазваног сопственом тежином од угла нагиба стреле ротора приказана је на сликама 58 и 59 и у табели 30.

	Сила у затези (kN) ¹⁾		
положај стреле ротора	стрела ротора	стрела баласта	
доњи, а _{sr} =–19,52°	2924	2854	
хоризонтални, α _{sr} =0°	3051	2812	
горњи, а _{sr} =14,1°	2924	2673	
Максимум	3055	2869	

¹⁾3a *g*=10 m/s²

7.5 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У УЖЕТУ ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (D=0)

Зависности максималне и минималне силе у ужету од положаја стреле ротора приказане су на сликама 60 и 61.


```
Слика 61: Минимална сила у ужету за случај оптерећења H1b (за D=0)
```

7.6 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У ЗАТЕГАМА СТРЕЛЕ РОТОРА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (*D*=0)

Зависности максималне и минималне силе у затегама стреле ротора од њеног положаја

приказане су на сликама 62 и 63.

Слика 62: Максимална сила у затези стреле ротора за случај оптерећења H1b (за D=0)

7.7 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У ЗАТЕГАМА СТРЕЛЕ БАЛАСТА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (*D*=0)

Зависности максималне и минималне силе у затегама стреле баласта од положаја стреле

ротора приказане су на сликама 64 и 65.

Слика 64: Максимална сила у затези стреле баласта за случај оптерећења H1b (за D=0)

7.8 УПОРЕДНА АНАЛИЗА ОСНОВНИХ ПАРАМЕТАРА БАГЕРА

Развојем 3Д модела горње градње багера, његовим усаглашавањем са резултатима Мерења 1 и корекцијама на основу података о извршеним реконструкцијама на стрели ротора и стрели баласта, утврђени су основни параметри багера који дефинишу његово актуелно стање. За тако коригован 3Д модел надградње, у даљем тексту користи се ознака 3ДА. У табелама 31 и 32 дат је упоредни приказ основних параметара багера наведених у Е2 (или одређених на основу података презентираних у Е2) и параметара одређених на основу 3ДА модела.

Параметар	E2	ЗДА	Разлика "ЗДА-Е2"
Укупна маса горње градње (t)	1198,370	1240,666	42,296 t
Маса баласта (t)	221,000	237,983	16,983 t
Маса горње градње без баласта (t)	977,370	1002,683	25,313 t
Положај стреле ротора	Ar	тсциса тежишта <i>х</i> т (ті	m)
Поткоп, <i>а_{sr}=</i> –19,52°	1370	1312	–58 mm
Хоризонтални <i>, α_{sr}=</i> 0°	1238	1177	–61 mm
Горњи, <i>а_{sr}</i> =14,1°	1812	1765	–47 mm
Положај стреле ротора	Сила у у>	кету од сопствене теж	кине (kN)
Поткоп <i>, а_{sr}=</i> –19,52°	242,1	256,6	14,5 kN
Хоризонтални <i>, α_{sr}=</i> 0°	233,2	247,2	14,0 kN
Горњи <i>, α_{sr}</i> =14,1°	223,8	237,1	13,3 kN
Положај стреле ротора	Притисак у хидроцилиндру од сопствене тежине (bar)		
Поткоп <i>, а_{sr}=</i> –19,52°	105,0	111,3	6,3 bar
Хоризонтални, α _{sr} =0°	101,1	107,2	6,1 bar
Горњи, <i>а_{sr}=</i> 14,1°	97,1	102,8	5,7 bar
Положај стреле ротора	Сила у затези стр	реле ротора од сопсте	зене тежине (kN)
Поткоп, <i>а_{sr}=</i> –19,52°	2744	2924	180 kN
Хоризонтални, α _{sr} =0°	2873	3051	178 kN
Горњи, <i>а_{sr}</i> =14,1°	2761	2924	163 kN
Положај стреле ротора	Сила у затези стр	еле баласта од сопст	вене тежине (kN)
Поткоп <i>, а_{sr}=</i> –19,52°	2753	2854	101 kN
Хоризонтални, α _{sr} =0°	2712	2812	100 kN
Горњи, _{<i>α_{sr}</i>=14,1°}	2578	2673	97 kN

Табела 31

Случај оптерећења H1b (D=0)	E2	ЗДА	Разлика "ЗДА-Е2"
Максимална сила у ужету (kN)	320,8	335,6	14,8
Минимална сила у ужету (kN)	217,0	229,2	12,2
Максимална сила у затези стреле ротора (kN)	3832,5	4012,7	180,2
Минимална сила у затези стреле ротора (kN)	2698,0	2839,0	141,0
Максимална сила у затези стреле баласта (kN)	3627,3	3733,0	105,7
Минимална сила у затези стреле баласта (kN)	2485,4	2565,7	80,3

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- Укупна маса горње градње за ЗДА модел већа је за ≈ 42,3 t од укупне масе према Елаборату 2, при чему је маса баласта већа за ≈ 17 t (маса баласта уграђеног пре Мерења 1 – 177,017 t – повећана је за 54,96 t пре Мерења 2 и за 6,006 t након реконструкција на стрели ротора и стрели баласта) а маса горње градње без баласта већа је за ≈ 25,3 t ("вишак масе" горње градње од ≈ 17 t у односу на 3Д модел утврђен је приликом Мерења 1, ≈ 7,4 t је додато приликом реконструкција на стрели ротора и стрели баласта, док 0,9 t представља разлику маса горње градње 3Д модела и Елабората 2).
- Тежиште горње градње ЗДА модела ближе је ротору за 61 mm при хоризонталном положају стреле ротора, иако је маса баласта већа за ≈ 17 t код ЗДА модела.
- 3. Повећање масе баласта да би се одступање положаја тежишта у односу пројектовани положај свело на прихватљиву меру, довело је до повећања интензитета оптерећења елемената система за вешање стреле ротора. Оно је најизраженије када се стрела ротора налази у поткопу (α_{SR}=–19,52°) и износи: 14,5 kN за уже, 180 kN за затегу стреле ротора и 101 kN за затегу стреле баласта. Наведене вредности односе се за случај дејства сопствене тежине стреле ротора, стуба 1 и стуба 2.
- За случај оптерећења H1b (за *D*=0) разлика максималних интензитета сила у ужету износи 14,8 kN, сила у затези стреле баласта 180,2 kN, док је максимални интензитет силе у стрели баласта већи за 105,7 kN.

7.9 МАКСИМАЛНЕ СИЛЕ У ЗАТЕГАМА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (D≠0)

Суперпонирајући динамичке ефекте који се јављају током рада багера (D_v =0,1 за стрелу ротора и D_v =0,04 за стуб 1 и стуб 2) са утицајем осталих оптерећења, добијају се максималне силе у затегама стреле ротора и стреле баласта, слике 66 и 67, табела 33.

Слика 66: Максимална сила у затези стреле ротора за случај оптерећења H1b (при D≠0)

1400/14 00

Положај стреле ротора	Максимални интензитет силе у затези (kN) 1)		
	стрела ротора	стрела баласта	
доњи, а _{sr} =–19,52°	4175	3714	
хоризонтални, α _{sr} =0°	4318	3707	
горњи, <i>а_{sr}</i> =14,1°	4190	3591	

¹⁾3a *g*=10 m/s²

Према стандарду DIN 22261 приликом анализе оптерећења затега стреле баласта не узима се у обзир утицај динамичких ефеката везаних за стрелу ротора. Међутим, ужад котураче система вешања стреле ротора у извесној мери преносе поменуте утицаје. Њихову квантификацију није могуће извршити на квазистатичким моделима, већ је неопходно развити одговарајући динамички модел, што захтева обимна истраживања. Зато су на слици 68 приказане максималне вредности силе затезања стреле баласта одређене на основу квазистатичког модела. Стварна вредност максималне силе затезања налази се између кривих приказаних на слици 68.

ОСМА ФАЗА ИСТРАЖИВАЊА: 8.0 Анализа утицаја дислокације оса обртања четири превојна котура на стубу 2

У осмој фази истраживања анализиран је утицај померености оса обртања 4 превојна котура на стубу 2, у односу на осе обртања 12 котурова смештених на врху поменутог стуба, цртеж број 4324042 (Прилог 9). Наиме, осе 4 превојна котура спуштене су дуж осе стуба 2 за 3000 mm у односу на осе обртања 12 котурова смештених на врху стуба 2. То изазива промену угла 4 крака ужета, односно, одговарајућу промену њихових растојања од референтних чворова система горње градње.

8.1 СИЛА У УЖЕТУ ОД СОПСТВЕНЕ ТЕЖИНЕ

Зависност оптерећења ужета изазваног сопственом тежином (стреле ротора, затега стреле ротора и стуба 1) од угла нагиба стреле ротора приказана је на слици 69. Интензитети силе у ужету за карактеристичне положаје стреле ротора приказани су у табели 34.

259,3
258,4
256,2
253,0
248,9
244,3
239,6
236,6

¹⁾3a *g*=10 m/s²

8.2 ПРИТИСАК У ХИДРОЦИЛИНДРИМА СИСТЕМА ЗА ВЕШАЊЕ СТРЕЛЕ РОТОРА

Зависност притиска у хидроцилиндрима система за вешање стреле ротора од њеног положаја приказана је на слици 70 и у табели 35. У обзир су узети утицаји сопствене тежине стреле ротора, затега стреле ротора и стуба 1, док је утицај губитака у котуровима занемарен (η_{κ} =1).

Слика 70: Притисак у хидроцилиндрима система за вешање стреле ротора за случај дејства сопствене тежине стреле ротора, затега стреле ротора и стуба 1 (за *g*=9,81 m/s² и η_к=1)

Положај стреле ротора	Притисак p_E (bar) ¹⁾
доњи, а _{sr} =–19,52°	112,5
α_{SR} =-15°	112,1
<i>α_{sr}=</i> -10°	111,1
α _{sr} =5°	109,7
хоризонтални, α _{sr} =0°	108,0
горњи, а _{sr} =5°	105,9
<i>α_{SR}</i> =10°	103,9
горњи, а _{sr} =14,1°	102,6

¹⁾За *g*=9,81 m/s² и *ŋк*=1

8.3 СИЛЕ У ЗАТЕГАМА ОД СОПСТВЕНЕ ТЕЖИНЕ

Зависност оптерећења затега стреле ротора и стреле баласта изазваног сопственом тежином од угла нагиба стреле ротора приказана је на сликама 71 и 72 и у табели 36.

Слика 71: Сила у затези стреле ротора (од сопствене тежине)

Слика 72: Сила у затези стреле баласта (од сопствене тежине)

	Сила у затези (kN) ¹⁾		
	стрела ротора	стрела баласта	
доњи <i>, а_{sr}=</i> —19,52°	2924	2755	
хоризонтални, α _{sr} =0°	3051	2700	
горњи <i>, а_{sr}=</i> 14,1°	2924	2543	
Максимум	3055	2766	

¹⁾3a *g*=10 m/s²

8.4 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У УЖЕТУ ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (D=0)

су на сликама 73 и 74.

F_{uH1b,min} (kN)

-15

-10

Зависности максималне и минималне силе у ужету од положаја стреле ротора приказане

X: -19.52 255 Y: 256.5 250 X: 0 Y: 247.3 245 240 235 230 X: 14.1 Y: 228.7 225 └─ -20

Nagib strele rotora u stepenima

0

5

10

15

-5

8.5 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У ЗАТЕГАМА СТРЕЛЕ РОТОРА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (*D*=0)

Зависности максималне и минималне силе у затегама стреле ротора од њеног положаја

приказане су на сликама 75 и 76.

Слика 75: Максимална сила у затези стреле ротора за случај оптерећења H1b (за D=0)

8.6 ЕКСТРЕМНИ ИНТЕНЗИТЕТИ СИЛА У ЗАТЕГАМА СТРЕЛЕ БАЛАСТА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (*D*=0)

Зависности максималне и минималне силе у затегама стреле баласта од положаја стреле

Слика 77: Максимална сила у затези стреле баласта за случај оптерећења H1b (за D=O)

86

8.7 МАКСИМАЛНЕ СИЛЕ У ЗАТЕГАМА ЗА СЛУЧАЈ ОПТЕРЕЋЕЊА H1b (D≠0)

Суперпонирајући динамичке ефекте који се јављају током рада багера (D_v =0,1 за стрелу ротора и D_v =0,04 за стуб 1 и стуб 2) са утицајем осталих оптерећења, добијају се максималне силе у затегама стреле ротора и стреле баласта, слике 79 и 80.

Слика 79: Максимална сила у затези стреле ротора за случај оптерећења H1b (при D≠0)

8.8 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА VII И VIII ФАЗЕ ИСТРАЖИВАЊА

Упоредни преглед оптерећења ужади и затега добијених коришћењем апроксимативне шеме (у даљем тексту "АШ", коришћена у Елаборатима 1 и 2 и у свим фазама истраживања, осим осме) и тачне шеме (у даљем тексту "ТШ") поужавања котурача за подизање стреле ротора приказан је у табелама 37 и 38.

Табела 37

	Параметар			
Положај стреле ротора	Сила у ужету од сопствене тежине (kN) ¹⁾		Разлика	
	АШ	ΤШ	"ТШ-АШ"	
Поткоп <i>, а_{sr}=</i> –19,52°	256,6	259,3	2,7 kN	
Хоризонтални, <i>а_{sr}=</i> 0°	247,2	248,9	1,7 kN	
Горњи, <i>а_{sr}</i> =14,1°	237,1	236,6	–0,5 kN	
	Притисак у хид	цроцилиндру	Разлика	
	од сопствене	гежине (bar)		
Положај стреле ротора	АШ	ТШ	"ТШ-АШ"	
Поткоп <i>, α_{sr}=</i> –19,52°	111,3	112,5	1,2 bar	
Хоризонтални, <i>а_{sr}=</i> 0°	107,2	108,0	0,8 bar	
Горњи, <i>а_{sr}</i> =14,1°	102,8	102,6	–0,2 bar	
	Сила у затези стреле ротора		Разлика	
	од сопствене тежине (kN) ¹⁾		r domina	
Положај стреле ротора	АШ ТШ		"ТШ-АШ"	
Поткоп <i>, α_{sr}=−19,</i> 52°	2924	2924	0 kN	
Хоризонтални, α _{sr} =0°	3051	3051	0 kN	
Горњи, <i>а_{sr}</i> =14,1°	2924	2924	0 kN	
максимум	3055	3055	0 kN	
	Сила у затези стреле баласта		Разлика	
	од сопствене тежине (kN) ¹⁾		Разлика	
Положај стреле ротора	АШ	ΤШ	"ТШ-АШ"	
Поткоп <i>, а_{sr}=</i> –19,52°	2854	2755	–99 kN	
Хоризонтални <i>, α_{sr}=</i> 0°	2812	2700	-112 kN	
Горњи, <i>а_{sr}=</i> 14,1°	2673	2543	-130 kN	
максимум	2869	2766	-103 kN	

¹⁾3a *g*=10 m/s²

Случај оптерећења H1b (D=0)	АШ	ΤШ	Разлика "ТШ-АШ"
Максимална сила у ужету (kN) ¹⁾	335,6	339,1	3,5 kN
Минимална сила у ужету (kN) ¹⁾	229,2	228,7	–0,5 kN
Максимална сила у затези стреле ротора (kN) ¹⁾	4013	4013	0 kN
Минимална сила у затези стреле ротора (kN) ¹⁾	2839	2839	0 kN
Максимална сила у затези стреле баласта (kN) ¹⁾	3733	3595	-138 kN
Минимална сила у затези стреле баласта (kN) ¹⁾	2566	2301	–265 kN
Случај оптерећења H1b (D≠0)			
Максимална сила у затези стреле ротора (kN) ¹⁾	4318	4318	0 kN
Максимална сила у затези стреле баласта (kN) ¹⁾	3733	3596	-137kN

¹⁾3a $g=10 \text{ m/s}^2$

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- 1. Уколико се у прорачунском моделу користи тачна шема поужавања котураче за дизање стреле ротора, за случај дејства сопствене тежине интензит силе у ужету већи је за 2,7 kN у доњем положају стреле ротора, односно, за 1,7 kN при хоризонталном положају стреле ротора, док је у горњем положају стреле ротора мањи за 0,5 kN. Максимална сила у ужету за случај оптерећења H1b (D=0) већа је за 3,5 kN код модела са тачном шемом поужавања, док је минимална сила у ужету мања за 0,5 kN.
- Интензитет силе у затези стреле ротора је практично неосетљив на апроксимацију шеме поужавања котураче за дизање стреле ротора.
- 3. Модел развијен на основу тачне шеме поужавања даје ниже интензитете сила у затези стреле баласта. За случај дејства сопствене тежине највећи утицај јавља се када се стрела ротора налази у горњем положају; тада смањење интензитета силе у затези баласта износи 130 kN. За случај оптерећења H1b, смањење максималног интензитета силе у затези стреле баласта износи 137 kN.

ДЕВЕТА ФАЗА ИСТРАЖИВАЊА: 9.0

Идентификација напонских стања структурних елемената горње градње на линији мониторинга

Да би се извршила идентификација напонског стања структурних елемената горње градње обухваћених системом мониторинга, на основу 3Д модела, слике 1-3, развијен је коначноелементни модел горње градње. Његове подструктуре приказане су на сликама 81 и 82.

Слика 81: 3Д модел подструктуре стреле ротора.

Слика 82: 3Д модел подструктуре модел стреле баласта са стубом 2, затегама и обртном платформом

9.1 УЗАЈАМНА ВАЛИДАЦИЈА КОНАЧНОЕЛЕМЕНТНОГ И АНАЛИТИЧКОГ МОДЕЛА ГОРЊЕ ГРАДЊЕ

Упоредни приказ оптерећења виталних елемената (ужад котураче за подизање стреле ротора, затеге стреле ротора и стреле баласта) за карактеристичне геометријске конфигурације горње градње, дат је у табели 39. На основу презентираних података и чињенице да су одступања резултата занемарљиво мала, закључује се да постоји потпуна сагласност резултата добијених коначноелементом анализом (КЕМ) и аналитичким поступком (ТШ).

Ta	бела	39
ı a	UEna	33

	Параметар		
Положај стреле ротора	Сила у ужету од сопствене тежине (kN)		Разлика
	KEM	ТШ ¹⁾	"ТШ-КЕМ"
Поткоп <i>, а_{sr}=</i> –19,52°	255,0	254,4	–0,6 kN
Хоризонтални, α _{sr} =0°	243,9	244,2	0,3 kN
Горњи, <i>а_{sr}=</i> 14,1°	231,3	232,1	0,8 kN
	Сила у затези стреле ротора		Разлика
	од сопствене тежине (kN)		
Положај стреле ротора	KEM	ТШ ¹⁾	"ТШ-КЕМ"
Поткоп <i>, а_{sr}=</i> –19,52°	2873	2868	–5 kN
Хоризонтални, α _{sr} =0°	2996	2993	-3 kN
Горњи <i>, α_{sr}=</i> 14,1°	2873	2868	–5 kN
	Сила у затези стреле баласта		Разлика
	од сопствене тежине (kN)		
Положај стреле ротора	KEM	ТШ ¹⁾	"ТШ-КЕМ"
Поткоп <i>, а_{sr}=</i> —19,52°	2703	2703	0 kN
Хоризонтални, $lpha_{\scriptscriptstyle SR}$ =0°	2649	2649	0 kN
Горњи, <i>а_{sr}</i> =14,1°	2495	2495	0 kN

¹⁾3a *g*=9.81 m/s²

9.2 НАПОНСКА СТАЊА СТРУКТУРНИХ ЕЛЕМЕНАТА ГОРЊЕ ГРАДЊЕ НА ЛИНИЈИ МОНИТОРИНГА

Мониторингом напонских стања обухваћени су витални елементи структуре горње градње. Идентификација и положај мерних места дати су у прилогу 10. Напонска стања елемената структуре горње градње под дејством сопствене тежине приказана су на сликама 83–108. Бројне вредности упоредних напона у мерним местима дате су у табели 40.

Слика 83: Напонско поље структуре стреле ротора, стуба 1 и затега на стрели ротора (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

Слика 84: Напонско поље структуре ушке 1 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 85: Напонско поље структуре ушке 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 86: Напонско поље структуре затега на стрели ротора

Слика 87: Напонско поље структуре стуба 1 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 88: Напонско поље структуре ушке 1 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 89: Напонско поље структуре ушке 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 90: Напонско поље структуре затега на стрели ротора

Слика 91: Напонско поље структуре стуба 1 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 93: Напонско поље структуре ушке 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 94: Напонско поље структуре затега на стрели ротора

Слика 95: Напонско поље структуре стуба 1 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 96: Напонско поље структуре стреле баласта, стуба 2, обртне платформе и затега на стрели баласта (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

Слика 97: Напонско поље структуре ушки на стубу 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 98: Напонско поље структуре затега на стрели баласта

Слика 99: Напонско поље структуре ушке 7 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 100: Напонско поље структуре ушке 8 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 101: Напонско поље структуре ушки на стубу 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 102: Напонско поље структуре затега на стрели баласта

Слика 103: Напонско поље структуре ушке 7 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 104: Напонско поље структуре ушке 8 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 105: Напонско поље структуре ушки на стубу 2 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 106: Напонско поље структуре затега на стрели баласта

Слика 107: Напонско поље структуре ушке 7 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Слика 108: Напонско поље структуре ушке 8 (вредности напона веће од 21 kN/cm² приказане су црвеном бојом)

Мерно место	Позиција	Упоредни напон (kN/cm ²)		
		Поткоп, <i>а_{sr}=</i> –19,52°	Хоризонтални, α _{sr} =0°	Горњи <i>, а_{sr}=</i> 14,1°
1	Ушка 1	8,8	9,4	9,1
	Ушка 2	8,7	9,3	9,0
2	Ламела 1	12,6	13,1	12,6
	Ламела 2	12,5	13,0	12,5
3	Ламела 3	12,5	13,0	12,5
	Ламела 4	12,6	13,1	12,6
4	Ушка З	6,0	6,3	6,0
	Ушка 4	6,5	6,6	6,3
5	Ушка 5	8,6	8,3	7,9
	Ушка б	8,5	8,2	7,8
6	Ламела 5	13,7	13,4	12,6
	Ламела 6	13,6	13,3	12,5
7	Ламела 7	13,7	13,4	12,6
	Ламела 8	13,7	13,4	12,6
8	Ушка 7	10,4	10,3	9,6
	Ушка 8	10,5	10,3	9,7

Табела 40

Максималне вредности упоредних напона у критичним пресецима ушки (пресек управан на правац дејства оптерећења) изазваних дејством сопствене тежине, као и одговарајуће вредности допуштених напона (*γ_F*=1,5 за случај оптерећења H1b), дате су у табели 41.

Табела 41

Vuiva	Максимални факторисани напон	Допуштени напон (H1b)		
Эшка	kN/cm ²			
Стрела ротора	22,2	21,0		
Стуб 1	19,4	21,0		
Затега стреле ротора	25,2	22,3		
Стрела баласта	21,4	21,0		
Стуб 2	17,7	21,0		
Затега стреле баласта	22,4	22,3		

9.3 НАПОНСКО СТАЊЕ НОСАЧА РАДИЈАЛНОГ ЛЕЖАЈА ВРАТИЛА РОТОРА

Током истраживања напонских стања на линији мониторинга, утврђено је да се у чворном лиму горњег појаса носача радијалног лежаја вратила ротора, под дејством сопствене тежине, јавља напон од 20,8 kN/cm². Зона високог напонског стања простире се по целој дебљини лима и улази ≈ 20 mm у његову ширину, слика 109. Дебљина посматраног чворног лима износи 25 mm, што значи да допуштени напон за случај оптерећења H1b износи 23,0 kN/cm². Овако високо напонско стање под дејством сопствене тежине указује на могућност појаве недопустиво високих напонских стања у току рада багера.

Слика 109: Напонско поље чворног лима (вредности напона веће од 20 kN/cm² приказане су црвеном бојом)

10.0 Идентификација напонских стања ушки за случај оптерећења H1b

С обзиром на врло висок ниво напонских стања у критичним пресецима ушки затега стреле ротора и стреле баласта, као и ушки на поменутим елементима структуре горње градње, Табела 41, на захтев Инвеститора извшена је провера њиховог напонског стања за случај оптерећења H1b. Прорачун је изведен применом линеарне методе коначних елемената. 3Д модели разматраних структурних елемената формирани су на основу документације произвођача (КРУП), достављене од стране ПД РБ "Колубара".

Идентификација напонских стања извршена је на основу максималних сила у затегама према подацима које је доставио КРУП (Прилог 12) и према резултатима прорачуна презентираним у тачки 8.8.

10.1 НАПОНСКА СТАЊА УШКИ - ОПТЕРЕЋЕЊА ЗАТЕГА КРУП

За прорачун напонског стања усвојени су интензитети сила у затегама стреле ротора

 $F_{zSR} = 6264,6$ kN,

и затегама стреле баласта

 $F_{zSB} = 5556,3 \text{ kN},$

који су наведени у документу "Proofs and special provisions for stays of BWB and CWB" (Прилог 12) достављеном од стране ПД РБ "Колубара". Реч је о факторисаним оптерећењима (производ номиналног оптерећења и одговарајућег степена сигурности) за случај оптерећења Н (рад у номиналним радним условима, степен сигурности *у*_F=1,5) према DIN 22261-2. Дакле, доказ чврстоће изводи се према методи граничних стања. Затезне карактеристике (граница течења) материјала од кога су израђени разматрани структурни елементи (S355J2+N) усвојене су на основу стандарда EN 10025-2:2004(E), Прилог 11.

10.1.1 Ушке затеге стреле ротора

Дистрибуција упоредног (фон Мизес) напона у ламели затеге стреле ротора приказана је на слици 110. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 335 MPa) до дубине од ≈ 15 mm, слике 110 и 111.

Слика 110: Напонско поље ламеле затеге стреле ротора

(црвеном бојом означене су домени у којима су упоредни напони већи од R_e = 335 MPa)

Слика 111: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке ламеле затеге стреле ротора

10.1.2 Ушке на стрели ротора

Дистрибуција упоредног (фон Мизес) напона у ушки стреле ротора приказана је на слици 112. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 315 MPa) до дубине од ≈ 15,5 mm, слике 112 и 113.

10.1.3 Ушке затеге стреле баласта

Дистрибуција упоредног (фон Мизес) напона у ламели затеге стреле баласта приказана је на слици 114. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 335 MPa) до дубине од ≈ 15 mm, слике 114 и 115.

Слика 114: Напонско поље ламеле затеге стреле баласта (црвеном бојом означене су домени у којима су упоредни напони већи од *R_e* = 335 MPa)

Слика 115: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке ламеле затеге стреле баласта

10.1.4 Ушке на стрели баласта

Дистрибуција упоредног (фон Мизес) напона у ушки стреле баласта приказана је на слици 116. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 315 MPa) до дубине од ≈ 14 mm, слике 116 и 117.

Слика 116: Напонско поље ушке на стрели баласта (црвеном бојом означене су домени у којима су упоредни напони већи од *R*_e = 315 MPa)

Слика 117: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке на стрели баласта

10.2 НАПОНСКА СТАЊА УШКИ- ОПТЕРЕЋЕЊА ЗАТЕГА МФ

За прорачун напонских стања усвојени су факторисани интензитети сила у затегама (Табела 38),

 $F_{zSR} = 1.5 \times 4318 = 6477 \text{ kN}, \quad F_{zSB} = 1.5 \times 3596 = 5394 \text{ kN}.$

10.2.1 Ушке затеге стреле ротора

Дистрибуција упоредног (фон Мизес) напона у ламели затеге стреле ротора приказана је на слици 118. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 335 MPa) до дубине од ≈ 17 mm, слике 118 и 119.

Слика 118: Напонско поље ламеле затеге стреле ротора (црвеном бојом означене су домени у којима су упоредни напони већи од *R_e* = 335 MPa)

Слика 119: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке ламеле затеге стреле ротора

10.2.2 Ушке на стрели ротора

Дистрибуција упоредног (фон Мизес) напона у ушки стреле ротора приказана је на слици 120. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 315 MPa) до дубине од ≈ 17 mm, слике 120 и 121.

Слика 121: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке на стрели ротора

10.2.3 Ушке затеге стреле баласта

Дистрибуција упоредног (фон Мизес) напона у ламели затеге стреле баласта приказана је на слици 122. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 335 MPa) до дубине од ≈ 13 mm, слике 122 и 123.

Слика 122: Напонско поље ламеле затеге стреле баласта (црвеном бојом означене су домени у којима су упоредни напони већи од *R*_e = 335 MPa)

Слика 123: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке ламеле затеге стреле баласта

10.2.4 Ушке на стрели баласта

Дистрибуција упоредног (фон Мизес) напона у ушки стреле баласта приказана је на слици 124. Критични пресек ушке (A – A) је управан на правац дејства силе. Напони од факторисаног оптерећења у критичном пресеку већи су од одговарајуће границе течења (R_e = 315 MPa) до дубине од ≈ 13 mm, слике 124 и 125.

Слика 124: Напонско поље ушке на стрели баласта (црвеном бојом означене су домени у којима су упоредни напони већи од *R*_e = 315 MPa)

Слика 125: Расподела упоредног (фон Мизес) напона у критичном пресеку ушке на стрели баласта

10.3 УПОРЕДНА АНАЛИЗА РЕЗУЛТАТА

Упоредни преглед максималних упоредних напона у критичним пресецима ушки и дубина зона преоптерећења разматраних ушки дат је у табели 42.

Табела 42

Ушка	Максимални наг пресеку	тон у критичном (kN/cm²)	Дубина зоне преоптерећења (mm)			
	Оптерећење-Круп	Оптерећење-МФ	Оптерећење-Круп	Оптерећење-МФ		
Затега стреле ротора	47,6	49,2	15	17		
Стрела ротора	46,2	47,8	15,5	17		
Затега стреле баласта	46,6	45,3	15	13		
Стрела баласта	44,5	43,2	14	13		

На основу презентираних резултата прорачуна и њихове анализе, закључује се следеће:

- Интензитет факторисане силе у затези стреле ротора одређен у тачки 8. овог елабората (6477 kN) већи је за 212,4 kN од одговарајуће силе која је наведена и извештају КРУП-а (6264,6 kN);
- Интензитет факторисане силе у затези стреле баласта одређен у тачки 8. овог елабората (5394 kN) мањи је за 162,3 kN од одговарајуће силе која је наведена и извештају КРУП-а (5556,3 kN);
- Максималне вредности упоредних напона у критичним пресецима ушки знатно превазилазе граничне вредности, при оптерећењима које је дефинисао Круп, као и при оптерећењима одређеним у овом елаборату;
- 4. Зоне напонских стања које превазилазе граничне вредности јављају се по целокупним дебљинама ушки и простиру се до дубине од 13 до 17 mm мерено од ивице отвора.

11.0 ЗАКЉУЧНА РАЗМАТРАЊА

Да би се извршила калибрација система за мониторинг напонских стања виталних елемената структуре горње градње, било је неопходно да се развије одговарајући ЗД модел горње градње. Он је формиран на основу конструкционе документације (цртежа) достављених од стране Инвеститора. С обзиром на чињеницу да је током реализације пројекта багера дошло до промене масених параметара горње градње, што је недвосмислено утврђено првим вагањем обављеним на монтажном плацу одмах након завршене монтаже, било је неопходно да се изврши детаљна идентификација маса и положаја свих елемената горње градње. Осим тога, извршене су и накнадне реконструкције на стрели ротора и стрели баласта, које су, такође, резултирале променом масених параметара горње градње. Све промене на горњој градњи за које постоји писани траг и које су достављене од стране Инвеститора, унете су у ЗД модел. Његова коначна маса усаглашена је и са резултатима првог вагања, чији су резултати прихваћени од стране произвођача.

За идентификацију оптерећења ужади система за вешање стреле ротора и затега стреле ротора и стреле баласта у целокупном домену промене угла нагиба стреле ротора, на основу аналитичког модела развијен је одговарајући софтвер. Његова валидација извршена је на основу компаративне анализе резултата са резултатима које за карактеристичне положаје стреле ротора даје Круп.

Коначна анализа оптерећења виталних елемената структуре горње градње изведена је модификованом верзијом софтвера, којом је обухваћен и утицај дислокације оса обртања четири превојна котура на стубу 2. Улазна датотека формирана је на основу 3Д модела горње градње, уз кориговање масе сагласно резултатима првог вагања и подацима о извршеним реконструкцијама.

Анализа оптерећења подструктура горње градње извршена је и применом методе коначних елемената. Упоредна анализа тако добијених резултата и резултата добијених применом софтвера базираног на аналитичком моделу показала је изузетно висок степен сагласности, што представља узајамну валидацију примењених метода прорачуна.

Основни параметри актуелног стања горње градње презентирани су у табели 43. Пре калибрације система за мониторинг напонских стања сагласно тебели 44, неопходно је горњу градњу опрати и у највећој могућој мери елиминисати утицај нечистоћа. Потом обавити вагање багера за карактеристиче положаје стреле ротора (доњи, хоризонтални, горњи) уз симултано очитавање притисака на "Паркерима". Осим тога, неопходно је очитавати притисак у положајима стреле ротора дефинисаним у табели 35 (страна 82), како би се верификовала крива дата на слици 70 (страна 81).

Укупна маса горње градње (t)	Укупна маса горње градње (t)					
Маса баласта (t)		237,983				
	Положај стреле ротора					
Апсциса тежишта <i>хт</i> (mm)	Поткоп, <i>а_{sr}=</i> –19,52°	1312				
	Хоризонтални, <i>а_{sr}=</i> 0°	1177				
	Горњи, <i>а_{sr}</i> =14,1°	1765				
	Положај стреле ротора					
Притисак у хидроцилиндру	Поткоп, <i>а_{sr}=</i> –19,52°	112,5				
од сопствене тежине (bar)	Хоризонтални, <i>а_{sr}=</i> 0°	108,0				
	Горњи, <i>а_{sr}=</i> 14,1°	102,6				

Табела 43: Основни параметри актуелног стања горње градње

Табела 44: Напони на линији мониторинга изазвани сопственом тежином

Мерно	Пориција	Упоредни напон (kN/cm ²)							
место	позиција	Поткоп, <i>а_{sr}=</i> –19,52°	Хоризонтални, α _{sr} =0°	Горњи, а _{sr} =14,1°					
1	Ушка 1	8,8	9,4	9,1					
	Ушка 2	8,7	9,3	9,0					
2	Ламела 1	12,6	13,1	12,6					
2	Ламела 2	12,5	13,0	12,5					
2	Ламела 3	12,5	13,0	12,5					
3 Ламела 4	12,6	13,1	12,6						
4	Ушка З	6,0	6,3	6,0					
4	Ушка 4	6,5	6,6	6,3					
5	Ушка 5	8,6	8,3	7,9					
5	Ушка 6	8,5	8,2	7,8					
6	Ламела 5	13,7	13,4	12,6					
0	Ламела 6	13,6	13,3	12,5					
7	Ламела 7	13,7	13,4	12,6					
	Ламела 8	13,7	13,4	12,6					
0	Ушка 7	10,4	10,3	9,6					
0	Ушка 8	10,5	10,3	9,7					

С обзиром на чињеницу да су током коначноелементне анализе при дејству сопствене тежине утврђена врло висока напонска стања ушки затега, као и ушки на стрели ротора стрели баласта, на захтев Инвеститора извршена је и коначноелементна идентификација напонског стања поменутих елемената за случај оптерећења H1b (рад багера у нормалном режиму експлоатације). Утврђено је да вредности напона у критичним пресецима ушки (пресеци управни на правац дејства оптерећења) знатно превазилазе граничне вредности, како при оптерећењима које је дефинисао Круп, као и при оптерећењима одређеним у овом елаборату. Зоне напонских стања које превазилазе граничне вредности јављају се по целокупним дебљинама ушки и простиру се до дубине од 13 до 17 mm мерено од ивице отвора. Имајући у виду да је у поменутим зонама доминантан утицај напона затезања, оне представљају слаба места конструкције и потенцијалну опасност за њен интегритет.

Током истраживања напонских стања на линији мониторинга, под дејством оптерећења изазваног сопственом тежином, у чворном лиму горњег појаса носача радијалног лежаја уочена је зона високог напонског стања која се простире по целој дебљини лима и улази ≈ 20 mm у његову ширину. Изузетно високо напонско стање под дејством сопствене тежине, указује на могућност појаве недопустиво високих напона у току рада багера.

Изложене чињенице намећу потребу перманентог праћења стања виталних елемената структуре горње градње, као и детаљну прорачунску проверу напона структуре горње градње. ПРИЛОЗИ

ПРИЛОГ1

"Preliminary Stability Calculation – Revision 1" од 05.04. 2007. године Стране A2_4 ... A2_17, A2_26, A2_31, A2_32

ThyssenKrupp Fördertechnik

Bucket wheel excavator system EPS

Bucket wheel excavator

1600 SchRs ----- * 25 3

Chapter A2-BWE :

Preliminary Stability Calculation

Revision 1

 Customer:
 EPS / Kolubara Lignite Basin / Tamnava West

 Order No. :
 N 010 00035

 General arrangement drawing:
 4322432
 4322711: Substructure 4322898: Superstructure 432898: Superstructure 4328988: Superstructure 432898: Superstructure 432898: Sup

prepared:

05.04.2007 Dr.-Ing. F. Schneider Frank Simeich

MI EN 12

approved:

П-3

Bucket wheel excavator

EPS 3092 BWE_LU_Rev_1.xis,Terminology_B

- 196 -

Determination of loads (Bucket wheel excavator)

Weights, centres of gravity

x-axis is defined positiv in conveying direction !

Bucket wheel boom

coordinates referring to pivot bucket wheel boom related to ground, slew centre x1 y1 z1 -3.878 0.000 15.250

assem	bly	group	G [t]	x1 [m]	y1 [m]	z1 [m]	G*x	G*y	G*z
							0.0	0.0	0.0
Bucket wheel boom part ER	S	76000	11.000	-0.600	0.000	1.600	-6.6	0.0	17.6
Bucket wheel boom part A 18m	S	76000	42.500	-9.100	0.100	1.000	-386.8	4.3	42.5
Bucket wheel boom part B 9.5m	S	76000	18.500	-22.400	0.200	1.100	-414.4	3.7	20.4
Bucket wheel boom part	S	76000	0.000	-2.100	0.100	0.000	0.0	0.0	0.0
Steel structure head	s	76000	38.500	-32.100	1.000	0.500	-1235.9	38.5	19.3
BWB Stays 50% 117.500	s	76000	7.000	-29.400	0.000	3.300	-205.8	0.0	23.1
Drivers cabin guide frame	s		11.810	-28.600	4.600	3.800	-337.8	54.3	44.9
Drivers cabin frame	s		1.150	-28.600	7.950	3.000	-32.9	9.1	3.5
Drivers cabin suspension	s		3.739	-28.600	5.800	5.400	-106.9	21.7	20.2
operators cabin	Ε		2.500	-28.600	7.950	6.400	-71.5	19.9	16.0
16.699									
Belt girder	s	76000	5.000	-14.100	0.900	1.250	-70.5	4.5	6.3
Ring chute	s	76000	6.500	-40.000	-0.450	-0.800	-260.0	-2.9	-5.2
Bucket wheel chute	S	76000	12.600	-36.400	1.100	2.500	-458.6	13.9	31.5
Baffle wall front cross wall	S	76000	1.500	-38.400	2.000	1.500	-57.6	3.0	2.3
Protection roof (gear)	S	76000	4.500	-34.600	-3.400	2.500	-155.7	-15.3	11.3
Walkway head + drivers cap	S	76000	14.000	-23.100	1.400	0.360	-323.4	19.6	5.0
Walkways boom	S	76000	9.600	-17.600	1.200	-0.300	-169.0	11.5	-2.9
53.700							0.0	0.0	0.0
1 Bucket wheel gear compl.	М	51100	45.000	-36.288	-3.350	0.100	-1633.0	-150.8	4.5
1 Bucket wheel axle with flange + bearings	М	51300	16.500	-36.288	-0.600	0.000	-598.8	-9.9	0.0
Mechanical parts to bucket wheel drive	М		1.000	-35.000	-4.100	0.800	-35.0	-4.1	0.8
1 Bearing gear side	М		0.000	-36.450	-2.000	0.000	0.0	0.0	0.0
1 Bearing belt side	М		0.000	-35.900	2.850	0.000	0.0	0.0	0.0
17 Buckets	М	51410	29.750	-36.288	-0.637	0.800	-1079.6	-19.0	23.8
1 Bucket wheel body	М	51900	45.000	-36.288	-0.637	0.000	-1633.0	-28.7	0.0
137.250									
2 Belt drives	М	61100	6.222	2.300	0.100	0.000	14.3	0.6	0.0
Drive pulley	М	61210	3.300	2.300	0.100	0.000	7.6	0.3	0.0
Return pulley	М	61230	2.930	-39.500	1.650	0.255	-115.7	4.8	0.7
20 Impact idler garland	М	61310	3.600	-33.700	1.420	0.500	-121.3	5.1	1.8
32 Carrying idler garland	М	61320	2.688	-13.500	0.680	0.500	-36.3	1.8	1.3
7 Idler station 10° (Lower belt)	М	61330	0.964	-24.300	1.100	-0.100	-23.4	1.1	-0.1
2 dia 250	М	61240	0.900	-2.800	0.260	-0.200	-2.5	0.2	-0.2
2 dia 318	М	61240	1.176	-10.300	0.560	-0.200	-12.1	0.7	-0.2
1 dia 250	М	61240	0.450	-10.300	0.560	-0.200	-4.6	0.3	-0.1
1 dia 288	М	61240	0.522	-33.200	1.410	-0.800	-17.3	0.7	-0.4
1 dia 312	М	61240	0.558	-37.300	1.580	-0.600	-20.8	0.9	-0.3
1 Control idler station	М	61350	0.400	-35.300	1.500	-0.500	-14.1	0.6	-0.2
Take-up device	М		0.500	-40.000	2.000	0.255	-20.0	1.0	0.1
Take-up pulley dia 830	М		0.000	-14.200	0.700	-0.800	0.0	0.0	0.0
Take-up pulley dia 830	М		0.000	-17.000	0.820	-0.600	0.0	0.0	0.0
1 Belt scraper	М	61380	0.170	2.000	0.059	-0.150	0.3	0.0	0.0
1 Pre scraper	Μ	61380	0.110	2.000	0.080	-0.600	0.2	0.0	-0.1
1 Plough scraper	Μ	61380	0.210	-38.500	1.600	-0.400	-8.1	0.3	-0.1
1 Pulley scraper	М	61380	0.000	-39.500	1.650	-0.250	0.0	0.0	0.0
24.700							0.0	0.0	0.0

Spillage conveyor 1.1:	1						0.0	0.0	0.0
I Belt gear unit	М	65100	0.229	-12.250	-1.200	-0.700	-2.8	-0.3	-0.2
I Drive pulley	М	65210	0.457	-12.250	0.630	-0.700	-5.6	0.3	-0.3
Return pulley	М	65230	0.437	2.000	0.050	-1.100	0.9	0.0	-0.5
Idlers	М	65330	0.440	-6.400	0.400	-0.900	-2.8	0.2	-0.4
l idler station	М	64330	0.092	-0.800	0.400	-1.000	-0.1	0.0	-0.1
l idler	М	64330	0.092	-10.200	0.550	-0.900	-0.9	0.1	-0.1
Take-up device	М	66360	0.024	-12.250	0.630	-0.900	-0.3	0.0	0.0
Scrapers	М	65370	0.212	1.900	0.050	-1.300	0.4	0.0	-0.3
winch rope drivers cabin	М	35200	0.653	-29.000	7.500	8.000	-18.9	4.9	5.2
winch gear drivers cabin	М	32110	0.820	-29.000	7.500	11.400	-23.8	6.2	9.3
nechanical parts for winch of drivers cabin	М	32200	1.300	-29.000	7.500	11.400	-37.7	9.8	14.8
Buide roller support right	М		0.540	-28.600	4.400	6.400	-15.4	2.4	3.5
Suide roller support left	М		0.540	-28.600	4.400	6.400	-15.4	2.4	3.5
Motors bucket wheel drive 1150 kW	E		9.360	-31.900	-4.200	0.500	-298.6	-39.3	4.7
1 Motor spillage conveyor 1.1	E		0.200	-12.700	-1.500	-0.300	-2.5	-0.3	-0.1
Operating cabin (refer above)	E		0.000	-28.600	7.950	3.000	0.0	0.0	0.0
2 Motors conveyor 1, partly 50%	E		1.500	2.300	0.000	0.000	3.5	0.0	0.0
Cables, lighting, heating	E		2.500	-17.100	1.000	3.500	-42.8	2.5	8.8
imit switch	v	93000	1.100	0.000	0.000	0.000	0.0	0.0	0.0
Dil BW gear	v	98000	2.500	-36.280	-3.350	0.000	-90.7	-8.4	0.0
-lydraulik chute flap	v		1.000	-38.400	1.600	1.500	-38.4	1.6	1.5
Compressed air system partly	v	94100	2.000	-21.600	0.800	0.500	-43.2	1.6	1.0
Fire extinguishing system partly	v	94200	1.800	-21.600	0.800	0.500	-38.9	1.4	0.9
3elt conveyor 1 87m * 80 kg/m	v	95110	6.950	-18.300	0.860	-0.240	-127.2	6.0	-1.7
Belt conveyor 1.1	v	95150	0.848	-5.200	0.350	-0.880	-4.4	0.3	-0.7
Coating 1.5 % Stb	v	97000	2.900	-27.000	0.000	0.800	-78.3	0.0	2.3
oil and grease	v	91100	0.616	-36.300	-4.200	0.000	-22.4	-2.6	0.0
							0.0	0.0	0.0
sum		1	204 450	20.050	0.050	0.064	-10552.0	-10.4	220 1
			391.459	-20.958	-0.050	0.804	-10552.5	-13.4	330.1

187.899

167.786

16.060

19.714

391.459

BWB

 Steel structure
 S

 Mech. equipment
 M

 El. equipment
 E

 Miscellaneous
 V

 sum

Moment of inertia belonging to slewing centre $G \times (X1+dX)^2 = 427114$ tm² dx = -3.878 m

Mast 1	coordinates referring to pivot mast 1									
	related to	o gra	ound, sle	w centre :	x2	y2	z2			
					-4.864	0.000	18.984			
				G [t]	x2 [m]	y2 [m]	z2 [m]	G*x	G*y	G*z
					10.0462	(and the second		0.0	0.0	0.0
Mast 1		S	96000	10.500	-1.300	0.000	6.500	-13.7	0.0	68.3
Rope sheave girder	3	s	96000	26.200	-3.600	0.000	15.500	-94.3	0.0	406.1
BWB Stays 50%		S	96000	7.000	-3.600	0.000	15.500	-25.2	0.0	108.5
	43.700									
4 rope sheave blocks	1	М	36110	9.040	-3.600	0.000	16.000	-32.5	0.0	144.6
Winch ropes partly		М	35160	2.043	-3.600	0.000	15.500	-7.4	0.0	31.7
Bearing mast - bucket wheel boom	1	М	37400	0.323	0.000	0.000	0.000	0.0	0.0	0.0
	11.406							0.0	0.0	0.0
lifting crane 1.6t capacity	1	М	41200	0.500	-3.000	0.000	18.000	-1.5	0.0	9.0
Walkways ladders to mast		s	96000	1.500	-1.000	0.000	7.000	-1.5	0.0	10.5
Walkway		s	96000	1.800	-2.800	0.000	14.600	-5.0	0.0	26.3
oil and grease		v	91100	0.320	-3.000	0.000	13.600	-1.0	0.0	4.4
Coating 1.5 % Stb		V	97000	0.710	-3.000	0.000	13.600	-2.1	0.0	9.7
sum				59.936	-3.073	0.000	13.664	-184.2	0.0	818.9

Steel structure	S
Mech. equipment	M
El. equipment	E
Miscellaneous	V
sum	

Moment of inertia belonging to slewing centre G x $(X1+dX)^2 = 3831$ tm² dx = -4.864 m

Mast 2

coordinates	referring to	o pivot ma	st 2
related to ground, slew centre	x3	уЗ	z3
	3.878	0.000	22.450

11.906

0.000

1.030

59.936

			G [t]	x3 [m]	y3 [m]	z3 [m]	G*x	G*y	G*z
							0.0	0.0	0.0
Rope sheave girder	s	74000	34.200	0.000	0.000	14.000	0.0	0.0	478.8
Mast2	S	74000	13.200	0.000	0.000	5.500	0.0	0.0	72.6
CWB stays 1/2	S	74000	6.000	0.000	0.000	14.800	0.0	0.0	88.8
access	S	74000	1.200	-0.800	0.000	8.000	-1.0	0.0	9.6
walkways	S	74000	1.800	-1.500	0.000	13.500	-2.7	0.0	24.3
56.400									
4 rope sheave blocks	М	36110	9.040	0.000	0.000	14.800	0.0	0.0	133.8
Winch rope partly	М	35160	2.589	0.000	0.000	14.800	0.0	0.0	38.3
4 return sheaves mast2	М	35130	3.064	0.600	0.000	12.000	1.8	0.0	36.8
4 return sheaves mast2	М	35131	3.200	0.600	0.000	12.000	1.9	0.0	38.4
Bearing mast - counterweight boom	М	37400	0.323	0.000	0.000	0.000	0.0	0.0	0.0
oil and grease	V	91100	0.305	0.000	0.000	11.900	0.0	0.0	3.6
Coating 1.5 % Stb	V	97000	0.850	0.000	0.000	12.000	0.0	0.0	10.2
sum			75.770	0.001	0.000	12.343	0.1	0.0	935.2

Steel structure	S	56.400	Moment of inertia belonging to slewing centre
Mech. equipment	М	18.215	G x (X1+dX)^2 = 1150 tm^2
El. equipment	E	0.000	
Miscellaneous	V	1.155	dx = 3.878 m
sum		75.770	

Counter weight boom

coordinates referring to slew centre / top surface of platform

related to ground, slew centre : x4 y4 z4

0.000 0.000 13.400

			G [t]	v4 [m]	v4 [m]	74 [m]	G*x	G*v	G*7
	-		U IU	v4 [m]	34 [m]	24 [m]	00	0.0	0.0
Ballast boom Tower	s	75000	57.364	1.800	0.000	3,300	103.3	0.0	189.3
Ballast boom latice part	S	75000	59.571	20.000	0.000	7.300	1191.4	0.0	434.9
Ballastbox	S	75000	31,065	34,000	0.000	10.000	1056.2	0.0	310.6
CWB stays 1/2	S	75000	6.000	23,800	0.000	12,500	142.8	0.0	75.0
154.000						1000	0.0	0.0	0.0
E-house&Trafo platform	s	75000	11.200	22.800	0.000	6.500	255.4	0.0	72.8
Winch hoist frame	s	75000	16.000	29,500	0.000	12.200	472.0	0.0	195.2
Winch house	S	75000	5.000	32.000	0.000	15,100	160.0	0.0	75.5
upper walkway	S	75000	3.800	27.000	0.000	12.000	102.6	0.0	45.6
Stairs	s	75000	2.200	24.200	0.000	9.800	53.2	0.0	21.6
Walkway	S	75000	2.100	17.100	0.000	7.200	35.9	0.0	15.1
Walkway to Trafo	s	75000	3.300	25.300	0.000	6.700	83.5	0.0	22.1
Walkway	S	75000	1.100	28.200	0.000	6.700	31.0	0.0	7.4
stairs	s	75000	0.900	11.600	0.000	8.900	10.4	0.0	8.0
Walkway upper, long. transverse	S	75000	1.500	6.000	0.000	10.500	9.0	0.0	15.8
stair acesses	S	75000	2.500	8.500	0.000	3.700	21.3	0.0	9.3
Transfer point 1/2 + Baffle plate	S	75000	9.000	1.000	0.000	2.800	9.0	0.0	25.2
58.600							0.0	0.0	0.0
Winch mechanical parts compl.	м	31200	30.842	32.400	0.000	13.600	999.3	0.0	419.5
winch gear 2	М	31110	6.400	30.800	0.000	13.300	197.1	0.0	85.1
winch rope on drum	М	35160	3.287	32.400	0.000	13.600	106.5	0.0	44.7
winch rope fix point	М	35160	1.000	20.000	0.000	12.200	20.0	0.0	12.2
Rope overload gard	М	84300	0.720	19.928	0.000	12.200	14.3	0.0	8.8
42.249							0.0	0.0	0.0
Bearing of bucket wheeel boom	М	37600	6.452	-3.878	0.000	1.850	-25.0	0.0	11.9
lifting crane slew centre 5t	М	41200	1.000	0.000	0.000	7.600	0.0	0.0	7.6
Slewing crane for ballast boom 5t	М	41100	16.000	37.500	0.000	18.500	600.0	0.0	296.0
2 Winch motors 250kW	E		3.000	27.900	0.000	12.300	83.7	0.0	36.9
2 Motors conveyor 1, partly 50%	E		1.500	2.700	0.000	2.200	4.1	0.0	3.3
E-house	E		11.500	21.500	0.000	8.000	247.3	0.0	92.0
E-house equipment incl. 3000kg cable	E		15.000	21.500	0.000	7.000	322.5	0.0	105.0
Trafohouse / cover	E		2.000	29.000	0.000	8.600	58.0	0.0	17.2
Transformer 2500 kVA	E		8.150	29.600	0.000	8.000	241.2	0.0	65.2
Transformer 350 kVA	E		2.000	29.600	0.000	8.000	59.2	0.0	16.0
50% Local control devices	E		0.700	23.800	0.000	10.000	16.7	0.0	7.0
Cables, lighting, heating	E		10.000	17.000	0.000	12.000	170.0	0.0	120.0
Name plate	E	89100	1.426	21.500	0.000	8.000	30.7	0.0	11.4
Tools	E	89400	0.120	23.500	0.000	8.400	2.8	0.0	1.0
55.396							0.0	0.0	0.0
grease spray equipment for hoist winch		91100	0.100	29.500	0.000	13.400	3.0	0.0	1.3
Fire extinguishing system	V	94200	1.500	22.000	0.000	9.000	33.0	0.0	13.5
Coating 1.5 % Stb		97000	3.200	17.300	0.000	8.600	55.4	0.0	27.5
Oil and grease		91100	0.500	29.500	0.000	13.400	14.8	0.0	6.7
	<u> </u>						0.0	0.0	0.0
sum			338.997	20.624	0.000	8.652	6991.4	0.0	2933.2
Steel structure	S		212.600		Momen	t of inertia	a belonging	to slew	ng centre
Mech. equipment	М		65.701		G x (X	1+dX)^2 =	192776	tm^2	

G x (X1+dX)^2 = 192776 tm^2

El. equipment

Miscellaneous

sum

A2_9 П-9

55.396

5.300

338.997

Е

v

Winch rope:			8.146	t			
	distribution		Mast1	Mast 2	fixing	winch drum	n
		m	t	t	t	t	sum
	horizontal position:	13.00	1.794	2.340	0.227	3.785	8.146
	high position	8.40	1.167	1.713	0.227	5.039	8.146
	ground position	18.10	2.490	3.035	0.227	2.394	8.146
	lowest position:	19.80	2.721	3.267	0.227	1.931	8.146
	running rope					3.108	
			Mast1	Mast 2	fixing	vinch drum	
for this stability cald	culation mean value will be co	onsidered :	2.043	2.589	0.227	3.287	8.146

Ballast				coordinates	referring to	o centre p	latform			
		related to	ground,	slew centre	x4	y4	z4			
					0.000	0.000	13.400			
				G [t]	x4 [m]	y4 [m]	z4 [m]	G*x	G*y	G*z
								0.0	0.0	0.0
Ballast		V		197.000	34.300	0.000	9.800	6757.1	0.0	1930.6
sum				197.000	34.300	0.000	9.800	6757.1	0.0	1930.6
	Steel structure Mech. equipment	S		0.000		Momen G x (X	t of inertia 1+dX)^2 =	belonging 231769	to slew tm^2	ing centre
	El. equipment	E		0.000			'			
	Miscellaneous	V		197.000			dx =	0.000	m	
	sum			197.000						
for design of superstrue	cture:									
Ballast reserve of	f		provide :	25.00 12.690%	t =	21.35	t additiona	al at centre (of bucket	wheel
Note : Ballast weight for	or basic load cases	in AGS				G =	197.00	t		

Platform

coordinates referring to centre of main ball race bearing

related to ground, slew centre : x5 y5 z5

0.000 0.000 11.575

			G [t]	x5 [m]	y5 [m]	z5 [m]	G*x	G*y	G*z
							0.0	0.0	0.0
Platform main structure	S	73000	80.000	0.000	0.000	1.100	0.0	0.0	88.0
Platform main structure	S	73000	5.100	0.000	0.000	1.100	0.0	0.0	5.6
85.100									
transfer point 1/2	S	73000	7.700	0.000	0.000	0.700	0.0	0.0	5.4
Walkway	S	73000	2.100	0.000	0.000	1.200	0.0	0.0	2.5
locking pipes	S	73000	1.300	0.000	0.000	0.700	0.0	0.0	0.9
4 catch hooks	S	73000	2.200	0.000	0.000	-0.500	0.0	0.0	-1.1
Cover KDV	S	73000	1.500	0.000	0.000	0.300	0.0	0.0	0.5
14.800							0.0	0.0	0.0
Slew assembly :							0.0	0.0	0.0
2 slew assembly gear	М	25110	8.400	0.000	0.000	0.500	0.0	0.0	4.2
50% Segments for ballrace	Μ	21300	9.540	0.000	0.000	0.000			
fixing device	М	21300	0.800	0.000	0.000	0.000			
associated drive parts	М		0.000	0.000	0.000	1.200			
18.740							0.0	0.0	0.0
2 Slewing motors 75 kW	Е		1.540	0.000	0.000	1.200	0.0	0.0	1.8
loor -							0.0	0.0	0.0
Lubrication for lube pinion	٧	91100	0.100	0.000	0.000	0.000	0.0	0.0	0.0
Lubrication for ball race	٧	91100	1.800	0.000	0.000	0.000	0.0	0.0	0.0
2/3 Limit switch (excavator)	V	93000	2.200	0.000	0.000	0.200	0.0	0.0	0.4
Coating 1.5 % Stb	۷	96000	1.500	0.000	0.000	1.100	0.0	0.0	1.7
Oil	۷	98000	0.220	0.000	0.000	1.300	0.0	0.0	0.3
	۷								
							0.0	0.0	0.0
sum			126.00	0.000	0.000	0.875	0.0	0.0	110.2

Steel structure	S	99.900	Moment of inertia	belonging	g to slewing centre
Mech. equipment	M	18.740	G x (X1+dX)^2 =	0	tm^2
El. equipment	E	1.540			-
Miscellaneous	V	5.820	dx =	0.000	m
sum		126.000			

Substructure

coordinates related to slew centre / supporting balls

related to ground, slew centre : x6 y6 z6

0.000 0.000 3.850

			Gft	v6 [m]	v6 [m]	76 [m]	G*y	G*v	G*7
	_		U [ŋ	Yo [m]	yo [m]	20 [m]	0.0	0.0	0.0
Substructure circular wall	G	72000	46 600	0.000	0.000	4 200	0.0	0.0	105.7
Substructure ton plate	0	72000	44 100	0.000	0.000	7 400	0.0	0.0	226.2
Substructure dear rim support	0	72000	4 700	0.000	0.000	7 200	0.0	0.0	33.8
reinforced structure for catch books	0	72000	0.050	0.000	0.000	8 100	0.0	0.0	77
Substructure bottom plate	0 0	72000	27 000	0.000	0.000	0.750	0.0	0.0	20 4
Substructure bottom plate	2	72000	15 000	0.000	0.000	2.500	122.2	0.0	20.4
Substructure supporting legs (2	72000	15.000	-8.100	0.000	3.500	-122.3	0.0	52.5
substructure supporting legs A, B (steering)	5	72000	34.000	7.450	0.000	3.500	253.3	0.0	119.0
Inemai lauce girders for Jacks	5	72000	9.500	0.000	0.000	0.800	0.0	0.0	04.0
bridge support	S	72000	9.000	18.000	0.000	1.600	162.0	0.0	14.4
bridge support lattice outside	S	72000	14.200	11.300	0.000	2.100	160.5	0.0	29.8
bridge support lattice inside	S	72000	13.200	2.250	0.000	2.000	29.7	0.0	26.4
bridge support lattice 2.3m	S	72000	3.500	6.150	0.000	2.100	21.5	0.0	7.4
lattice between steering supports	S	72000	18.500	7.450	0.000	2.300	137.8	0.0	42.6
lattice between steering supports	S	72000	6.500	7.450	0.000	2.300	48.4	0.0	15.0
lattice between steering supports	S	72000	2.900	7.450	0.000	2.300	21.6	0.0	6.7
Supporting frame Lenkdeichseln	S	72000	6.500	7.450	0.000	0.000	48.4	0.0	0.0
Conveyor frame conv.2	S	72000	15.000	7.500	0.000	4.300	112.5	0.0	64.5
E-House platform	S	72000	5.800	-2.200	-7.800	1.000	-12.8	-45.2	5.8
E-House platform/ crew room/ Trafo platform	S	72000	5.800	-2.200	7.800	1.000	-12.8	45.2	5.8
E-House platform support internal	S	72000	2.500	-1.400	0.000	3.500	-3.5	0.0	8.8
crew room, mech. Workshop, complete	s	72000	18.000	-2.200	7.500	3.350	-39.6	135.0	60.3
Container for Air compressor	s		2.500	-9.900	5.500	3.350	-24.8	13.8	8.4
Container for Hydraulic / Lubrication	s		4.500	-6.200	-6.400	3.350	-27.9	-28.8	15.1
covering of fire extingisher room	s		0.300	-6.500	0.000	5.000	-2.0	0.0	1.5
314.050									
Chute and baffle plate	s	72000	4.500	18.000	0.000	8.000	81.0	0.0	36.0
Feeding chute + belt girder	S	72000	9.500	1.300	0.000	7.000	12.4	0.0	66.5
Protective grating, covers, cable guide	S	72000	3.300	0.000	0.000	7.000	0.0	0.0	23.1
Hoist beam + suspension	S	72000		0.000	0.000	4.800	0.0	0.0	0.0
Walkway 70% BWE2	S	72000	35.500	0.000	0.000	4.000	0.0	0.0	142.0
142.026							0.0	0.0	0.0
conveyor 2:							0.0	0.0	0.0
1 Belt drive 315kW	М	62100	3.300	16.300	-2.100	8.600	53.8	-6.9	28.4
1 Drive pulley	М	62210	3,100	16,500	0.000	9.800	51.2	0.0	30.4
1 Take-up pulley	М	62230	2.500	-1.200	0.000	4.800	-3.0	0.0	12.0
10 Impact idler garland	М	62310	1.800	2.200	0.000	6.300	4.0	0.0	11.3
12 Carrying idler garland	М	62320	1.032	10,200	0.000	8,600	10.5	0.0	8.9
3 garlands lower strand	M	62330	0.258	11,000	0.000	7.800	2.8	0.0	2.0
training idler station	м	62340	0 180	15 000	0 000	9 400	27	0.0	17
training idler station	М	62360	0.254	3,200	0.000	5,400	0.8	0.0	14
3 Straight idlers	м	62370	0.276	3 200	0.000	5 400	0.9	0.0	15
Take-up device	M	62360	0.500	-1 500	0.000	4 800	-0.8	0.0	24
3 scapers	M	62380	0.680	8,000	0.000	7 400	5.4	0.0	5.0
12 000		02000	0.000	0.000	0.000	1.400	0.0	0.0	0.0
13.880			I				0.0	0.0	0.0

1 impactpully dia.1000 with drive	unit	М		0.000	0.000	0.000	0.000	0.0	0.0	0.0
2 impactpully dia.600 with drive u	unit	М		0.000	0.000	0.000	0.000	0.0	0.0	0.0
3 Impact pulley scraper		М		0.000	0.000	0.000	0.000	0.0	0.0	0.0
1 Mechanical part for hyd. Steeri	ing	М	?	1.300	7.450	0.000	0.000	9.7	0.0	0.0
2 Sphercial support		М	18140	8.370	7.450	0.000	0.000	62.4	0.0	0.0
50% Segments for ballrace		М	21300	9.540	0.000	0.000	7.650	0.0	0.0	73.0
ball cages		М	21300	1.400	0.000	0.000	7.650	0.0	0.0	10.7
141 Balls dia 200		М	21300	4.636	0.000	0.000	7.650	0.0	0.0	35.5
cover, sealing and misc.		М	21300	1.700	0.000	0.000	7.650	0.0	0.0	13.0
1 Toothed rim segments		М	21300	10.400	0.000	0.000	7.650	0.0	0.0	79.6
1 Connecting material for toothe	d rim	М	21300	0.400	0.000	0.000	7.500	0.0	0.0	3.0
1 Small parts		М	21300	1.800	0.000	0.000	7.500	0.0	0.0	13.5
E-hoist at lubrication room		М		0.100	-6.200	-6.400	4.350	-0.6	-0.6	0.4
Compressed air system power u	nit	М		3.500	-9.300	5.100	2.500	-32.6	17.9	8.8
	43.146							0.0	0.0	0.0
Motor conveyor 2 1*315 kW		Е		2.000	14.400	-2.100	8.600	28.8	-4.2	17.2
cable chain		Ε	0	1.500	0.000	0.000	7.000	0.0	0.0	10.5
E-House container		Е		6.000	-1.400	-7.800	3.400	-8.4	-46.8	20.4
E-House NS electric , AC, cables	s	Ε		8.100	-3.000	-7.500	3.350	-24.3	-60.8	27.1
E-Workshop , conainer + equipped	ment 1.5t	Ε		4.000	2.600	-9.000	3.350	10.4	-36.0	13.4
cables, lighting, heating		Е		8.000	0.000	0.000	2.000	0.0	0.0	16.0
	29.600							0.0	0.0	0.0
Centr.lubrication.sys. for substru	cture	V	0	1.100	0.000	0.000	7.500	0.0	0.0	8.3
Lubrication power unit		V		1.500	-8.000	-5.500	1.750	-12.0	-8.3	2.6
Hydraulic power unit		V		2.500	-5.200	-6.000	1.750	-13.0	-15.0	4.4
Hydraulic cylinder steering		V	84000	7.500	3.000	0.000	0.000	22.5	0.0	0.0
Pipes and hoses		V		0.900	-5.000	-2.500	1.000	-4.5	-2.3	0.9
hydraulic oil		V	98000	0.600	1.200	0.000	0.000	0.7	0.0	0.0
Tools		V		0.000	-6.800	6.400	2.400	0.0	0.0	0.0
Fire extinguishing system		V	94200	2.400	0.000	0.000	3.600	0.0	0.0	8.6
water tank 10m ³		V		0.800	-6.350	0.000	2.000	-5.1	0.0	1.6
water 50% of 10m ³		V		5.000	-6.350	0.000	1.500	-31.8	0.0	7.5
water tank fresh and waste		V		0.500	1.200	6.800	1.000	0.6	3.4	0.5
fresh and waste water 50% of 2.	5m³	V		1.250	1.200	6.800	1.000	1.5	8.5	1.3
Belt for conveyor 2		V	95120	3.200	7.600	0.000	5.800	24.3	0.0	18.6
Coating 1.5 % Stb		V	97100	5.600	0.700	0.000	4.000	3.9	0.0	22.4
Oil and greasing		V	98000	1.900	4.000	-2.000	3.500	7.6	-3.8	6.7
								0.0	0.0	0.0
				111212						
sum				495.526	2.043	-0.070	3.911	1012.2	-34.9	1938.2
Steel st	ructure	S		374.150						
Mech. e	equipment	М		57.026						
El. equi	pment	Е		29.600						
Miscella	aneous	V		34.750						
sum				495.526						

Travelling mechanism

coordinates referring to centre of ball race / ground level

related to ground, slew centre : x7 y7 z7

0.000 0.000 0.000

			G [t]	x7 [m]	y7 [m]	z7 [m]	G*x	G*y	G*z
fixed side							0.0	0.0	0.0
2 Travel drive gear unit with shaft flange	М	11100	13.200	-8.150	-7.000	1.200	-107.6	-92.4	15.8
Associated drive parts	М	11330	0.728	-8.150	-7.100	1.000	-5.9	-5.2	0.7
2 Drive sprocket with shaft	М	11310	7.800	-8.150	-7.100	1.200	-63.6	-55.4	9.4
2 Tumbler	М	11320	4.200	-8.150	7.100	1.200	-34.2	29.8	5.0
16 2 - Wheel bogie	М	11410	11.360	-8.150	0.000	0.500	-92.6	0.0	5.7
4 4 - Wheel bogie	М	11420	8.640	-8.150	0.000	0.750	-70.4	0.0	6.5
2 8 - Wheel bogie	М	11430	13.800	-8.150	0.000	1.100	-112.5	0.0	15.2
2 x 55 Crawler pads	М	11500	61.600	-8.150	0.000	1.500	-502.0	0.0	92.4
2 x 3 Supporting roller	М	11600	2.160	-8.150	0.000	3.000	-17.6	0.0	6.5
2 Cover for crawler	М	11800	0.400	-8.150	0.000	2.500	-3.3	0.0	1.0
2 Crawler frame	М	11900	56.000	-8.150	0.000	1.800	-456.4	0.0	100.8
2 Mechanical parts for crawler frame	М			-8.150	0.000	3.000	0.0	0.0	0.0
1 Axle for fixed crawler	М	18110	19.600	-8.150	0.000	1,900	-159.7	0.0	37.2
1 Fixed draw bar	М	18210	17.500	-8,150	0.000	2,100	-142.6	0.0	36.8
2 Drive motors	E		1.660	-8.150	-5.500	1.500	-13.5	-9.1	2.5
218.648									
steering side									
4 Travel drive gear unit with shaft flange	М	11100	26,400	7.450	0.000	1.200	196.7	0.0	31.7
Associated drive parts	М	11330	1.456	7.450	0.000	1.000	10.8	0.0	1.5
4 Drive sprocket with shaft	М	11310	15.600	7.450	0.000	1.200	116.2	0.0	18.7
4 Tumbler	М	11320	8.400	7.450	0.000	1.200	62.6	0.0	10.1
32 2 - Wheel bogie	М	11410	22.720	7.450	0.000	0.500	169.3	0.0	11.4
8 4 - Wheel bogie	М	11420	17.280	7,450	0.000	0.750	128.7	0.0	13.0
4 8 - Wheel bogie	М	11430	27.600	7.450	0.000	1.100	205.6	0.0	30.4
4 x 55 Crawler pads	М	11500	123.200	7.450	0.000	1.500	917.8	0.0	184.8
4 x 3 Supporting roller	М	11600	4.320	7.450	0.000	3.000	32.2	0.0	13.0
4 Cover for crawler	М	11800	0.800	7.450	0.000	2.500	6.0	0.0	2.0
4 Crawler frame	М	11900	112.000	7.450	0.000	1.800	834.4	0.0	201.6
4 Mechanical parts for crawler frame	М			7,450	0.000	3.000	0.0	0.0	0.0
2 Axle for steered crawler	М	18120	35.600	7.450	0.000	1.900	265.2	0.0	67.6
2 Steered draw bar	М	18230	53.000	7.450	0.000	2.100	394.9	0.0	111.3
4 Drive motors	E		3.320	7.450	0.000	1.500	24.7	0.0	5.0
451.696									
Cables	Е		1.200	0.000	0.000	1.500	0.0	0.0	1.8
							0.0	0.0	0.0
Lubricating system	v		1.000	0.000	0.000	1.600	0.0	0.0	1.6
Coating 0.5 % Mb	v		3.300	0.000	0.000	1.600	0.0	0.0	5.3
Oils and grease	V		0.500	0.000	0.000	1.800	0.0	0.0	0.9
	3				10000		0.0	0.0	0.0
sum			676.344	2.341	-0.196	1.548	1583.2	-132.3	1046.9

		184.800	t = weight of crawler chains
Steel structure	S	0.000	
Mech. equipment	M	665.364	
El. equipment	E	6.180	
Miscellaneous	V	4.800	
sum		676.344	

Coordinate systems belonging to main coordinate system

	Point	x [m]	y [m]	z [m]	
pivot bucket wheel boom	5	-3.878	0.000	15.250]
pivot mast 1	4	-4.864	0.000	18.984	
pivot mast 2	11	3.878	0.000	22.450	
support at top of platform	16	0.000	0.000	13.400	for reference only
main ball race bearing	17	0.000	0.000	11.575	
supporting balls	19	0.000	0.000	3.850	
ground level	20	0.000	0.000	0.000	
					•

Summery of movable weights at pivot bucket wheel boom

•											
	coordinates belonging to pivot bucket wheel boom										
] [Grad	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z		
Bucket wheel boom horizontal	1 [0	391.459	-26.958	-0.050	0.864	-10552.9	-19.4	338.1		
Mast 1			59.936	-4.059	0.000	17.398	-243.3	0.0	1042.7		
Bucket wheel boom + Mast 1 horizontal	1 [0	451.395	-23.917	-0.043	3.059	-10796.2	-19.4	1380.8		
Bucket wheel boom + Mast 1 high		13.55	451.395	-22.535	-0.043	8.576	-10172.4	-19.4	3871.3		
Bucket wheel boom + Mast 1 planum		-14.60	451.395	-23.916	-0.043	-3.069	-10795.6	-19.4	-1385.2		
Bucket wheel boom + Mast 1 low		-19.52	451.395	-23.565	-0.043	-5.108	-10637.0	-19.4	-2305.9		

Summery of Weights at centre platform

	coordinates belonging to centre platform										
	Grad	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z			
Bucket wheel boom + Mast 1 horizontal	0	451.395	-27.795	-0.043	4.909	-12546.7	-19.4	2215.9			
Bucket wheel boom + Mast 1 high	13.55	451.395	-26.413	-0.043	10.426	-11922.9	-19.4	4706.3			
Bucket wheel boom + Mast 1 planum	-14.60	451.395	-27.794	-0.043	-1.219	-12546.1	-19.4	-550.1			
Bucket wheel boom + Mast 1 low	-19.52	451.395	-27.443	-0.043	-3.258	-12387.6	-19.4	-1470.8			
Mast 2		75.770	3.879	0.000	21.393	293.9	0.0	1620.9			
Counterweight boom		338.997	20.624	0.000	8.652	6991.4	0.0	2933.2			
Ballast		197.000	34.300	0.000	9.800	6757.1	0.0	1930.6			

Weights at centre platform

Loads at supporting balls	BWB hor.	с -	0	1063.162	1.407	-0.018	8.184	1495.7	-19.4	8700.6
Loads at supporting balls	BWB high		13.55	1063.162	1.994	-0.018	10.526	2119.5	-19.4	11191.0
Loads at supporting balls	BWB plan.		-14.60	1063.162	1.407	-0.018	5.582	1496.3	-19.4	5934.6
Loads at supporting balls	BWB low		-19.52	1063.162	1.557	-0.018	4.716	1654.8	-19.4	5013.9

Summery of Weights at main ball race

coordinates belonging to centre of main ball race

	11111-001		Grad	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z
Loads at supporting balls	BWB hor.	1	0	1063.162	1.407	-0.018	10.009	1495.7	-19.4	10640.8
Loads at supporting balls	BWB high		13.55	1063.162	1.994	-0.018	12.351	2119.5	-19.4	13131.3
Loads at supporting balls	BWB plan.		-14.60	1063.162	1.407	-0.018	7.407	1496.3	-19.4	7874.9
Loads at supporting balls	BWB low		-19.52	1063.162	1.557	-0.018	6.541	1654.8	-19.4	6954.1
Platform]		126.000	0.000	0.000	0.875	0.0	0.0	110.2

Weights at main ball race

Loads at main ball race	BWB hor.		0	1189.162	1.258	-0.016	9.041	1495.7	-19.4	10751.0
Loads at main ball race	BWB high		13.55	1189.162	1.782	-0.016	11.135	2119.5	-19.4	13241.5
Loads at main ball race	BWB plan.	-	14.60	1189.162	1.258	-0.016	6.715	1496.3	-19.4	7985.1
Loads at main ball race	BWB low	-	19.52	1189.162	1.392	-0.016	5.941	1654.8	-19.4	7064.3

Moment of inertia belonging to slewing centre at main ball race

Bucket wheel boom horizontal

G x X^2 = 856639 tm^2

Summary of weights :

Weights excavator

Steel structure	977.949	t
Mech. equipment	1004.738	t
El. equipment	108.776	t
Miscellaneous	72.569	t
Ballast	197.000	t
Buildot		

sum 2361.032 t

Weights bridge

Steel structure	312.087	t
Mech. equipment	59.285	t
El. equipment	16.870	t
Miscellaneous	24.217	t
sum	412.459	t

Weights loading unit

Steel structure	231.250	t
Mech. equipment	238.806	t
El. equipment	84.325	t
Miscellaneous	16.234	t
sum	570.615	t

Total weights : Bucket wheel excavator system

Steel structure	1521.286	t
Mech. equipment	1302.828	t
El. equipment	209.971	t
Miscellaneous	113.020	t
Ballast	197.000	t
sum	3344.105	t

Note : weight of turn table bridge is listed in weights bridge !

Limit of winch rope forces

05.04.2007

The cut-off value for ${\bf A}$ and ${\bf Z}$ will be adjusted in the winch rope system.

Loads see AGS :

V4; winch ropes

number of reev	ings	24]	Low	Hor.	High	
		Positions of	bucket whe	eel boom :	-19.520	0.00	13.547	Grad
Load cases		Position in /	AGS		3	1	2	
Deadload		E		<u> </u>	224.4	225.0	216.0	L'NI
Normal tangant	ial force			8-	204.4	220.9	210.9	KIN KA
Normal radial for				S- 8-	44.0	44.0	44.0	KIN
Normal tangant				S- 0-	20.2	0.0	0.0	KIN
Normal tangent	lal torce	U_low		S=	20.3	0.0	-2.0	KN
Normal radial to	brce	UR_IOW		S=	0.0	0.0	0.0	KN
Material load		F1		5=	14.3	14.2	13.9	KN
Incrustation con	iveyor	VI		5=	1.4	1.4	1.4	KN
Incrustation but	cket wheel	VU		S=	14.8	14.9	14.8	KN
Blockage bucke	et wheel chute	VV 1		S =	44.9	44.1	42.9	KN
Inclination	5.0%	NXE		S =	2.9	-1.7	-4.8	KN
Inclination	5.0%	NxF1		S =	0.2	0.0	-0.2	kN
Inclination	5.0%	NxV1		S =	0.0	0.0	0.0	kN
Inclination	5.0%	NxV0	9 A	S =	0.3	0.0	-0.2	kN
Inclination	5.0%	NxVV1		S =	0.6	-0.2	-0.7	kN
Wind in operation	on 0,25	WX		S =	0.9	-0.7	-1.8	kN
Snow and ice		Snow		S =				kN
Inclination	5.0%	NxSnow		S =				kN
Snow and ice o	ut of Operation	Snow_out		S =				kN
Inclination	5.0%	NxSnow_o		S =				kN
Standard load of	case	Z0	1000 kN	S Z0 =	75.4	75.9	75.2	kN
Increase factor	from F1 into V	1	µV1 =	0.1000				
Increase factor	from N into NN	l	μNN =	2.0000				
Increase factor	from W into W	W	µWW =	3.2400				
Increase factor	from F into FF		µFF =	1.2109				
Increase factor	from U into UU		μUU =	1.3043				

Resultant lever arm to winch ropes in AGS

Minimum winch rope force without U E - ABS(NxE) - ABS(WX)			S min =	230.5	223.5	210.3	kN
Winch rope force	1)						
(H1b)	In operation	max	SH=	313.2	302.9	296.7	kN
(H1b)	In operation	min	S H =	231.4	224.2	209.6	kN
(HZ2)	In operation	max	SHZ =	314.2	303.6	298.5	kN
(HZ2)	In operation without UR	max	S HZ 2 =	314.2	303.6	298.5	kN
(HZ2)	In operation	min	SHZ =	230.5	223.5	207.8	kN
(HZ2)	In operation without UR	min	S HZ 2 =	230.5	223.5	207.8	kN
(HZ3)	Out of operation	max	SHZ =	256.9	246.2	243.9	kN
(HZ3)	Out of operation	min	SHZ =	228.4	222.0	206.3	kN
(HZS 4)	Transport	min	S HZS =	225.5	220.3	201.5	kN
(HZS 5)	Chute blockage	max	S HZS =	359.6	347.9	342.1	kN
(HZS 6)	Extr. material	max	S HZS =	272.4	261.8	256.9	kN
(HZS10)	Combination UU + S	max	S HZS =	327.8	317.3	312.1	kN
(HZS10)	Combination UU + S	min	S HZS =	230.5	223.5	207.0	kN

a =

19.001

19.912 19.476 m

Standard load cases for bridge loads.

Loads are belonging to ball race bearing bridge node 18 and coordinate system No. 6

FZ =	-1000	kN	X6 =	18.000	m
FZ =	-1000	kN	Y6 =	0.000	m
FX =	1000	kN	Z6 =	1.975	m
FY =	1000	kN			
MX =	1000	kNm			
MY =	1000	kNm			
	FZ = FZ = FX = FY = MX = MY =	FZ = -1000 FZ = -1000 FX = 1000 FY = 1000 MX = 1000 MY = 1000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} FZ = & -1000 & kN & X6 = \\ FZ = & -1000 & kN & Y6 = \\ FX = & 1000 & kN & Z6 = \\ FY = & 1000 & kN & \\ MX = & 1000 & kNm & \\ MY = & 1000 & kNm & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Bridge loads for calculation		(refer joint V1, Loading Unit)			10.10.2006		
		(H)	(HZ i.O)	(HZ 0.0)	(HZS)	(HZG)	
Max/Min	Hr ±	601.4	723.0	883.5	963.2	799.1	kN
Max/Min	Mr ±	884.2	1063.0	1512.2	1801.3	1175.5	kNm
Max	FZ = V_Br	-1397.8	-1396.2	-1397.9	-1393.8	-1392.7	kN
Min	Fz	-2383.6	-2398.2	-1949.7	-2599.1	-2414.1	kN
DV_Br = Mi	nFZ-MaxFZ =	-985.8	-1002.0	-551.9	-1205.3	-1021.4	kN

Note : If +FX = Hr then +MY = Mr If +FY = Hr then -MX = Mr

The factor to convert will be obtained by dividing the bridge loads by 1000!

For all load cases (H; HZ; HZS; HZG) will be calculated with the same extrem values from load case HZ in Operation ! Only load case HZ_J (Jack forces) will be calulated with bridge loads HZ out of Operation !

Resting forces (A) ; (AA) and overload forces (Z); (ZZ)

will be combined as permanent loads and belonging to the load cases. Inclination and Wind in Y-direction won't be considered.

Standard load case Z0	Z0 =	-1000	kN
On part 1 buckel wheel boom and coordinate system	n X9 at	joint 1.	

Ballastreserve for Stability calculations

Ballastreserve will be considered with p =	0.000%	for stabiliy c	alculations	
	12.690%	for structura	l analyses (SA)
Coordinates of centre of ballast node 14		X 14 =	34.300	m
Coordinates of centre of bucket wheel node 1		X 1 hor =	-40.166	m
		X 1 high =	-39.156	m
		X 1 low =	-38.080	m
		for Stability:	for SA	
BalRes	1= G Bal x p =	0.00	25.00	t
Balance weight in centre of bucket wheel node 1				
V0_bel = BalRes1 x X14 / -(X1hor+X1high+X1low) x 3 =		0.00	21.91	t
V0_bel = BalRes1 x X14 / -X1hor =		0.00	21.35	t
Ballast in basic load cases BalRes1 =	G Bal =	197		t
Factor to be applied on ballast	μ=	0.0000	0.1269	
belonging incrustation of bucket wheel V0_bel =	V0 =	196.6		kN
Factor to be applies on V0	μ =	0.0000	1.0861	

Combination codes :

For determining the ballast weight and extrem loadings of important load-carrying elements and for overall stability analysis, the following combination codes have been defined :

No. 1 :	Determination of the ballast
No. 2 :	Extreme forces of joints under service loadings ($\gamma F = 1.0$)
No. 3 :	Stability analysis with partial safety facors applied on live loads 1.0 times dead weight, γF time live loads
No. 4 :	Determination of jack forces for joint V9 and V10 under maintenance conditions For position 1 (horizontal) and 3 (low) only
No. 5 :	Stability analysis jack forces for joint V9 and V10 under maintenance conditions 1.0 times dead weight, γF time live loads
No. 6 :	for check of winch rope forces for settings (1.0 times setting values)
No. 7 :	for check of centre of gravity at ball race level under service loading
	refer "Operating Manual" of dismantling of bearing C at substructure to fixed crawler.

Ballast mass for My = 0 at ball race in horizontal position

	Γ	G	X	GxX
		[t]	[m]	[tm]
Bucket wheel boom + Mast 1		451.4	-27.795	-12546.7
Mast 2		75.8	3.879	293.9
Counterweight boom		339.0	20.624	6991.4
Platform		126.0	0.000	0.0
Sum		992.2	-5.303	-5261.4

Distance ballast to slew centre

X4 = <u>34.300</u> m

Ballast mass for balance; xs =0

Ba = -G x X / X4 = 153.4 t

ПРИЛОГ 2

"Final Stability Calculation – Revision 1" од 10.09. 2009. године Стране АЗ-6 ... АЗ-17, АЗ-27, АЗ-32, АЗ-33, 15.1, 15.12 и 15.18

ThyssenKrupp Fördertechnik

Bucket wheel excavator system EPS

Bucket wheel excavator					
1600 SchRs * 25 3					

Chapter A3-BWE :

Final Stability Calculation

Rev. 1

Customer:	EPS / Kolubara Lignite Basin / Tamnava West
Order No. :	N 010 00035
General arrangement drawing	g: 4 330 720
TKF machine No.	3092

prepared:

MI EN 12

ed: MI EN 12 10.09.2009 Dipl.Ing. Klaus Diebig

approved:

Determination of loads (Bucket wheel excavator)

Weights, centres of gravity

x-axis is defined positiv in conveying direction !

See " Group list N-010-00035 from 12.08.2008 " and Drawing No. 4323859 Rev.02 from 23.01.2007

Bucket wheel boom

coordinates referring to pivot bucket wheel boom related to ground, slew centre x1 y1 z1 -3,878 0,000 15,250

Bucket wheel boom part 1 S 7 6110 55,516 8_200 0,000 0,900 448,5 2,1 18,8 Bucket wheel boom part 2 S 76120 20,861 -21,500 0,100 0,900 -448,5 2,1 18,8 Bucket wheel boom part 3 S 76140 5,37 55,566 -24,00 0,000 330,1 -22,4 0,00 BW bearing support S 76160 15,065 -34,700 2,650 -52,05 -22,8 30,9 -7.5 Box girder 122,107 S 76160 15,065 -34,700 2,650 -64,00 -8,7 1,3 1,9 Drivers cabin subgension S 76181 1,604 -28,600 4,600 -8,7 1,0 0,0 0,00 0,00 1,0 1,1 1,0 1,0 0,0 0,00 0,00 0,00 0,00 0,00 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	assen	bly	group	G [t]	x1 [m]	y1 [m]	z1 [m]	G*x	G*y	G*z
Bucket wheel boom part 1 S 76110 55,516 -8,200 0,000 -448,5 2,1 18,8 Bucket wheel boom part 3 S 76120 20,861 -21,600 0,000 -300 -448,5 2,1 18,8 Bucket wheel boom part 3 S 76130 119,988 -2,400 0,000 -301 -2,24 0,0 BW head S 76160 1,340 -38,400 1,645 1,800 -51,5 2,2 2,4 Guide roller support left S 76181 1,604 -2,600 4,400 6,400 -8,7 1,3 1,9 Guide roller support left S 76181 1,604 -28,600 5,400 -53,7 10,9 10,1 Drivers cabin guide frame S 76180 1,602 -1,700 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>0,0</td><td>0,0</td><td>0,0</td></t<>							2	0,0	0,0	0,0
Bucket wheel boom part 2 S 76130 20,861 21,500 0,000 -569,7 0,0 15,0 Biv bearing support S 76130 19,968 -28,000 0,000 -330,1 -22,4 0,0 Biv hearing support S 76160 1,340 -34,700 2,050 -520,8 30,0 -755 Box girder S 76160 1,340 -34,800 1,440 -6400 -8,7 1,3 1,9 Guide roller support light S 76181 1,033 -28,600 4,600 -8,7 1,3 1,9 Drivers cabin suppension S 76184 1,878 -28,600 5,800 5,400 -53,7 10,0 10,1 Drivers cabin suppension S 76180 0,028 -0,700 0,700 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 </td <td>Bucket wheel boom part 1</td> <td>S</td> <td>76110</td> <td>55,516</td> <td>-8,200</td> <td>0,000</td> <td>0,900</td> <td>-455,2</td> <td>0,0</td> <td>50,0</td>	Bucket wheel boom part 1	S	76110	55,516	-8,200	0,000	0,900	-455,2	0,0	50,0
Bucket wheel boom part 3 S 76140 9,337 35,350 2,400 0,000 330,1 -22,4 0,0 BW head S 76160 1,340 -2,850 0,000 -522,8 30,9 -7,5 Box girder S 76160 1,340 -38,400 1,645 1,800 -51,5 2,2 2,4 Guide roller support left S 76181 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Guide roller support left S 76183 1,604 -28,600 5,800 -53,7 10,9 10,1 Drivers cabin support left S 76184 1,878 -28,600 5,800 -53,7 10,9 10,1 Drivers cabin frame S 76180 0,729 1,000 0,170 0,70 0,0 0,00 0,00 0,00 0,00 0,00 0,00 1,00 1,00 1,00 1,00 1,00 0,00 0,00 0,00 0,00 1,00 <t< td=""><td>Bucket wheel boom part 2</td><td>S</td><td>76120</td><td>20,861</td><td>-21,500</td><td>0,100</td><td>0,900</td><td>-448,5</td><td>2,1</td><td>18,8</td></t<>	Bucket wheel boom part 2	S	76120	20,861	-21,500	0,100	0,900	-448,5	2,1	18,8
BW bearing support S 76140 9.337 -35.380 -2.400 0.000 -323,1 -22.4 0.0 BW head S 76160 15.065 -34.700 2.050 -50.28 30,9 -7.5 Guide roller support left S 76180 1.340 -38.400 1.404 -8.400 -8.07 1.3 1.9 Cuide roller support left S 76182 0.303 -28.600 4.400 6.400 -8.7 1.3 1.9 Drivers cabin support left S 76183 1.604 -28.600 4.400 6.400 -8.7 1.3 1.9 Drivers cabin supports S 76185 5.085 -28.600 7.90 0.00 -0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Bucket wheel boom part 3	S	76130	19,988	-28,500	0,000	0,750	-569,7	0,0	15,0
BW head S 76150 15,065 -34,700 2,050 -0,500 -52,28 30,9 -7,5 Box girder S 76160 1,340 -38,400 1,645 1,800 -55,5 2,2 2,4 Guide roller support left S 76181 0,303 -28,600 4,400 6,400 -8,7 1,3 19 Drivers cabin suppersion S 76183 1,878 -28,600 4,600 -8,7 1,3 19 Drivers cabin suppersion S 76184 1,878 -28,600 7,800 0,00 0,0	BW bearing support	S	76140	9,337	-35,350	-2,400	0,000	-330,1	-22,4	0,0
Box girder s 76160 1,340 -38,400 1,645 1,800 -51,5 2,2 2,4 Guide roller support left s 76180 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Guide roller support left s 76183 1,604 -28,600 5,800 5,400 -53,7 1,09 10,11 Drivers cabin support left s 76183 1,604 -28,600 5,800 5,400 -53,7 1,09 10,10 Drivers cabin supports of supports obstres cabin frame s 76180 0,028 -0,700 0,70 0,0 0,00 1,84 1,4 -3,6 0,00 0,00 0,00 1,00 0,00 0,00 1,8,0 0,00 </td <td>BW head</td> <td>S</td> <td>76150</td> <td>15,065</td> <td>-34,700</td> <td>2,050</td> <td>-0,500</td> <td>-522,8</td> <td>30,9</td> <td>-7,5</td>	BW head	S	76150	15,065	-34,700	2,050	-0,500	-522,8	30,9	-7,5
1122,107 S 76181 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Guide roller support right S 76182 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Drivers cabin guide frame S 76184 1,874 -28,600 4,600 3,800 -45,9 7,4 6,11 Drivers cabin frame S 76185 5,055 -28,600 7,950 0,00 0,0 1,0	Box girder	S	76160	1,340	-38,400	1,645	1,800	-51,5	2,2	2,4
Cuide roller support left S 76181 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Guide roller support right S 76182 0,303 -28,600 4,600 6,400 -8,7 1,3 1,9 Drivers cabin suppension S 76181 1,604 -28,600 5,600 -4,60 -4,70 1,0 1,01 Drivers cabin suppension S 76185 5,085 -28,600 5,000 -45,4 40,4 15,3 Brains bet girder S 76180 0,028 -0,700 0,170 0,0 1,0 0,0 1,0 <td>122,107</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	122,107									
Guide roller support right S 76182 0,303 -28,600 4,400 6,400 -8,7 1,3 1,9 Drivers cabin support right S 76183 1,604 -28,600 4,600 3,800 -45,9 7,4 6,11 Drivers cabin supports S 76184 1,878 -28,600 5,800 5,800 -260,00 -0,00 0,0 1,0 1,0 1,0 1,0 1,0 1,0	Guide roller support left	S	76181	0,303	-28,600	4,400	6,400	-8,7	1,3	1,9
Drivers cabin guide frame S 76183 1,604 -28,600 4,600 3,800 -45,9 7,4 6,1 Drivers cabin suspension S 76184 1,878 -28,600 5,800 5,900 -53,7 10,9 10,1 Drivers cabin may bett girder S 76190 0,028 -0,700 0,170 0,670 0,0 0,00 0,00 Tension od BVM5 50% S 76310 0,729 1,000 0,100 1,150 0,7 0,1 0,8 Supports for gartands S 76510 4,529 -40,200 -0,300 -0,800 -182,1 1,01 10,9 Bucket wheel chute S 76530 4,127 -33,900 2,200 -138,9 9,9 9,1 1,01 10,8 0,7 Stirtboard S 76540 1,067 -38,600 1,000 -0,900 -62,6 0,4 -3,6 Lower walkway S 76650 0,292 -2,600 0,000 3,00 <td< td=""><td>Guide roller support right</td><td>S</td><td>76182</td><td>0,303</td><td>-28,600</td><td>4,400</td><td>6,400</td><td>-8,7</td><td>1,3</td><td>1,9</td></td<>	Guide roller support right	S	76182	0,303	-28,600	4,400	6,400	-8,7	1,3	1,9
Drivers cabin suspension s 76184 1,878 -28,600 5,800 5,400 -53,7 10,9 10,1 Drivers cabin frame s 76185 5,085 -28,600 7,950 3,000 -145,4 40,4 15,33 Bracing belig rider s 76110 8,178 -29,388 0,000 3,300 -240,3 0,0 2,70 Supports for gartands s 76510 4,529 -40,200 -0,300 -0,800 -182,1 -1,4 -3,6 Bucket wheel chute s 76520 4,960 -33,900 2,400 -20,00 -168,1 1,0 1,9 9,9 9,9 9,1 -7,7 5,6 1,067 -3,6 0,700 2,500 -41,2 1,8 2,7 Skirtboard s 76540 1,067 -3,800 2,700 -4,1 1,8 2,7 Skirtboard s 76650 0,239 -3,390 2,300 5,60 3,40 1,6 6,6 0,4 <td>Drivers cabin guide frame</td> <td>S</td> <td>76183</td> <td>1,604</td> <td>-28,600</td> <td>4,600</td> <td>3,800</td> <td>-45,9</td> <td>7,4</td> <td>6,1</td>	Drivers cabin guide frame	S	76183	1,604	-28,600	4,600	3,800	-45,9	7,4	6,1
Drivers cabin frame s 76185 5,085 -28,600 7,950 3,000 -145,4 40,4 15,3 Bracing belt girder s 76190 0,028 -0,700 0,170 0,670 0,0	Drivers cabin suspension	S	76184	1,878	-28,600	5,800	5,400	-53,7	10,9	10,1
Bracing belt girder S 76100 0.028 -0.700 0.170 0.670 0.0 0.0 0.0 Tensin nod BWB 50% S 76410 8,178 -29,388 0,000 3,300 -240,3 0,0 <t< td=""><td>Drivers cabin frame</td><td>S</td><td>76185</td><td>5,085</td><td>-28,600</td><td>7,950</td><td>3,000</td><td>-145,4</td><td>40,4</td><td>15,3</td></t<>	Drivers cabin frame	S	76185	5,085	-28,600	7,950	3,000	-145,4	40,4	15,3
Tension rod BWB 50% s 76410 8,178 -29,388 0,000 3,300 -240,3 0,0 27,0 Supports for garlands S 76310 0,729 1,000 0,100 1,150 0,7 0,1 0,8 Bucket wheel chute S 76510 4,529 -40,200 -0,300 -240,3 -14.2 1.4 -3,6 Bucket wheel chute S 76520 4,960 -33,900 2,200 -168,1 1.0 10,9 9,9 9,9 9,11 Chute head wall S 76540 1,067 -38,600 1,700 2,500 -41,2 1.8 2,7 Skirtboard S 76650 0,239 -33,900 2,300 2,700 -8,1 0,6 0,6 Lower walkway S 76650 0,229 -26,400 0,000 3,700 -24,5 0,30 8,4 Valway and stairs S 76660 3,178 2,500 0,000 -7,9 0,9 2,4	Bracing belt girder	S	76190	0,028	-0,700	0,170	0,670	0,0	0,0	0,0
17,379 0 0,0 0,0 0,0 0,0 Supports for garlands \$ 76310 0,729 1,000 0,100 1,150 0,7 0,1 0,8 Ring chute \$ 76520 4,960 -33,900 0,200 2,200 -168,1 1,0 10,9 Belt chute \$ 76530 4,127 -33,900 2,400 2,200 -139,9 9,9 9,1 Chute head wall \$ 76630 4,107 -38,600 1,700 -8,1 0,6 0,6 Lower walkway \$ 76630 4,015 -15,600 0,000 -8,2 0,4 -3,6 Lower walkway \$ 76630 4,015 -15,600 0,000 -7,9 0,0 7,0 -24,5 0,0 3,4 Valkway and stairs \$ 76660 3,178 -2500 0,005 2,200 -7,9 0,0 7,0 Ladder at guide frame \$ 76681 0,254 -17,500	Tension rod BWB 50%	S	76410	8,178	-29,388	0,000	3,300	-240,3	0,0	27,0
Supports for garlands s 76310 0,729 1,000 0,100 1,150 0,7 0,1 0,8 Ring chute s 76510 4,529 40,200 0,300 0,800 -168,1 1,0 1,0 10,9 Bucket wheel chute s 76530 4,127 -33,900 2,200 -168,1 1,0 10,9 Chute head wall s 76540 1,067 -38,600 1,700 2,500 -41,2 1,8 2,77 Skirboard s 76650 0,219 -33,900 2,000 -62,6 0,4 -3,6 Lower walkway s 76650 0,219 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 0,277 -28,650 0,005 2,200 -7,9 0,0 7,0 0,0 7,0 0,0 2,0 -1,5 0,5 1,600 4,010 1,5,00 5,520 -1,000 -1,5<	17,379							0,0	0,0	0,0
Ring chute s 76510 4,529 -40,200 -0,300 -0,800 -182,1 -1,4 -3,6 Bucket wheel chute s 76520 4,960 -33,900 2,200 -168,1 1,0 10,9 Beit chute s 76540 1,067 -38,600 1,700 2,500 -411,2 1,8 2,77 Skirtboard s 76560 0,239 -33,900 2,300 -700 -8,1 0,6 0,6 Lower walkway s 76630 4,015 -15,600 0,000 -9,00 -62,6 0,4 -3,6 Upper walkway s 76650 0,292 -26,400 0,000 3,700 -24,5 0,0 3,4 Valkway and stairs s 76660 0,277 -28,650 3,580 8,600 -7,9 0,0 7,0 Ladder at guide frame s 76661 0,324 -17,500 5,520 -1,500 -3,5,1 8,4 1,5 Safer to drivers cab	Supports for garlands	S	76310	0,729	1,000	0,100	1,150	0,7	0,1	0,8
Bucket wheel chute s 76520 4,960 -33,900 0,200 2,200 -168,1 1,0 10,9 Beit chute s 76530 4,127 -33,900 2,400 2,200 -139,9 9,9 9,1 Chute head wall s 76560 0,239 -33,900 2,300 2,500 -41,2 1,8 2,7 Skittboard s 76560 0,239 -33,900 0,600 1,950 -60,0 3,0 8,4 Lower walkway s 76650 0,229 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 3,178 -2,500 0,005 2,200 -7,9 0,0 7,0 0,0 Ladder at guide frame s 76670 0,277 -28,650 3,350 8,600 -7,9 0,0 7,6 -4,8 Stair to drivers cab s 76681 0,361 +17,500 5,520 -1,500 +3,1 1,5	Ring chute	S	76510	4,529	-40,200	-0,300	-0,800	-182,1	-1,4	-3,6
Belt chute S 76530 4,127 -33,900 2,400 2,200 -139,9 9,9 9,1 Chute head wall S 76540 1,067 -38,600 1,700 2,500 -41,2 1,8 2,7 Skirtboard S 76550 0,239 -33,900 2,300 2,600 -41,2 1,8 2,7 Skirtboard S 76630 4,015 -15,600 0,100 -0,900 -62,6 0,4 -3,6 Upper walkway S 76660 4,015 -15,600 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs S 76660 0,277 -28,650 3,350 8,600 -7,9 0,0 7,0 Ladder at guide frame S 76681 0,354 -17,500 5,520 -1,500 -47,9 17,6 -4,8 Stairto drivers cab S 76682 3,190 -15,000 5,200 -1,500 -32,3 -5,1 -1,5	Bucket wheel chute	S	76520	4,960	-33,900	0,200	2,200	-168,1	1,0	10,9
Chute head wall S 76540 1,067 -38,600 1,700 2,500 -41,2 1,8 2,7 Skitboard S 76550 0,239 -33,900 2,330 2,700 -8,1 0,6 0,6 Lower walkway S 76630 4,015 -15,600 0,100 -9,900 -62,6 0,4 -3,6 Upper walkway S 76650 4,319 -13,900 0,600 1,900 -62,6 0,4 -3,6 Ladder at guide frame S 76660 3,178 -2,500 0,005 2,200 -7,9 0,0 7,0 Ladder at guide frame S 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Stair to drivers cab S 76681 0,354 -17,500 5,520 -1,000 -35,51 8,4 1,5 Safety crossing S 76684 0,100 -15,000 5,520 1,500 -32,3 5,1 -1,5 >	Belt chute	S	76530	4,127	-33,900	2,400	2,200	-139,9	9,9	9,1
Skirtboard s 76550 0,239 -33,900 2,330 2,700 -8,1 0,6 0,6 Lower walkway s 76630 4,015 -15,600 0,100 -0,900 -62,6 0,4 -3,6 Upper walkway s 76660 0,929 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable plafform s 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Travelling rail platform s 76681 0,354 -17,500 5,520 -1,000 -1,5 0,5 -0,1 Stair to drivers cab s 76684 0,100 -15,000 5,000 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76680 2,602 -34,100 2,060 -295,5 -33,1 22,76 Grat	Chute head wall	S	76540	1,067	-38,600	1,700	2,500	-41,2	1,8	2,7
Lower walkway s 76630 4,015 -15,600 0,100 -0,900 -62,6 0,4 -3,8 Upper walkway s 76640 4,319 -13,900 0,690 1,950 -60,0 3,0 8,4 Top walkway s 76660 0,292 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable platform s 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Travelling rail platform s 76682 3,190 -15,000 5,520 -1,000 -35,1 8,4 1,5 Safer to drivers cab s 76683 1,528 -23,000 5,520 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76680 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5	Skirtboard	S	76550	0,239	-33,900	2,330	2,700	-8,1	0,6	0,6
Upper walkway s 76640 4,319 -13,900 0,690 1,950 -66,0 3,0 8,4 Top walkway s 76650 0,929 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 3,178 -2,500 0,005 2,200 -7,9 0,0 7,0 Ladder at guide frame s 76670 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable platform s 76681 0,354 -17,500 5,520 -1,500 -6,2 2,0 -0,5 Stair to drivers cab s 76683 1,528 -23,000 5,520 -1,500 -47,9 17,6 -4,8 Stair to drivers cab s 76684 0,100 -15,000 -5,000 -1,000 -1,50 -5,51 -1,5 Stair to drivers cabi s 76680 2,602 -34,100 2,060 0,200 -88,0 1,00 1,00	Lower walkway	S	76630	4,015	-15,600	0,100	-0,900	-62,6	0,4	-3,6
Top walkway s 76650 0,929 -26,400 0,000 3,700 -24,5 0,0 3,4 Walkway and stairs s 76660 3,178 -2,500 0,005 2,200 -7,9 0,0 7,0 Ladder at guide frame s 76670 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable platform s 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Stair to drivers cab s 76682 3,190 -15,000 5,520 -1,000 -35,1 8,4 1,5 Safety crossing s 76683 1,528 -23,000 -5,520 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway s 76690 2,602 -34,100 2,060 0,200 -280,0 1,00 1,00 1,	Upper walkway	s	76640	4,319	-13,900	0,690	1,950	-60,0	3,0	8,4
Walkway and stairs s 76660 3,178 -2,500 0,005 2,200 -7,9 0,0 7,0 Ladder at guide frame s 76670 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable platform s 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Travelling rail platform s 76683 1,528 -23,000 5,520 -1,000 -47,9 17,6 -4,8 Stair to drivers cab s 76683 1,528 -23,000 5,500 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway s 76680 2,602 -34,100 2,060 0,200 -295,5 -33,1 22,7 Gratings s 76820 5,002 -16,000 2,000 -25,5 1,5 0,2 <t< td=""><td>Top walkway</td><td>s</td><td>76650</td><td>0,929</td><td>-26,400</td><td>0,000</td><td>3,700</td><td>-24,5</td><td>0,0</td><td>3,4</td></t<>	Top walkway	s	76650	0,929	-26,400	0,000	3,700	-24,5	0,0	3,4
Ladder at guide frame S 76670 0,277 -28,650 3,350 8,600 -7,9 0,9 2,4 Movable platform S 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Travelling rail platform S 76682 3,190 -15,000 5,520 -1,500 -47,9 17,6 -4,8 Stair to drivers cab S 76683 1,528 -23,000 5,500 -1,000 -1,5 0,5 -0,1 Walkway BW drive S 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway S 766890 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) S 76820 5,002 -16,000 2,000 -25,5 -33,1 22,7 Gratings BWH S 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2	Walkway and stairs	s	76660	3,178	-2,500	0,005	2,200	-7,9	0,0	7,0
Movable platform S 76681 0,354 -17,500 5,520 -1,300 -6,2 2,0 -0,5 Travelling rail platform S 76682 3,190 -15,000 5,520 -1,500 -47,9 17,6 -4,8 Stair to drivers cab S 76683 1,528 -23,000 5,520 -1,000 -1,5 0,5 -0,1 Walkway BW drive S 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway S 76680 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) S 76710 8,717 -33,900 -3,800 2,600 -295,5 -3,31 22,7 Gratings S 76830 0,749 -34,100 2,060 0,200 -80,0 10,0 1,0 Gratings S 76830 0,749 -34,100 2,060 0,200 -25,5 1,5 0,2	Ladder at guide frame	s	76670	0,277	-28,650	3,350	8,600	-7,9	0,9	2,4
Travelling rail platform s 76682 3,190 -15,000 5,520 -1,500 -47,9 17,6 -4,8 Stair to drivers cab s 76683 1,528 -23,000 5,520 1,000 -35,1 8,4 1,5 Safety crossing s 76684 0,100 -15,000 5,000 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway s 76690 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) s 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings s 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings SUH s 76820 0,749 -28,400 7,000 11,400 -23,3 5,7 <t< td=""><td>Movable platform</td><td>s</td><td>76681</td><td>0,354</td><td>-17,500</td><td>5,520</td><td>-1,300</td><td>-6,2</td><td>2,0</td><td>-0,5</td></t<>	Movable platform	s	76681	0,354	-17,500	5,520	-1,300	-6,2	2,0	-0,5
Stair to drivers cab s 76683 1,528 -23,000 5,520 1,000 -35,1 8,4 1,5 Safety crossing s 76684 0,100 -15,000 5,000 -1,000 -1,5 0,5 -0,1 Walkway BW drive s 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway s 76690 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) s 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings s 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 33300 4,505 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000	Travelling rail platform	s	76682	3,190	-15,000	5,520	-1,500	-47,9	17,6	-4,8
Safety crossing S 76684 0,100 -15,000 5,000 -1,000 -1,5 0,5 -0,1 Walkway BW drive S 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway S 76690 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) S 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings S 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings BWH S 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 33300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9	Stair to drivers cab	S	76683	1,528	-23,000	5,520	1,000	-35,1	8,4	1,5
Walkway BW drive s 76685 0,981 -32,900 -5,200 -1,500 -32,3 -5,1 -1,5 BWH walkway s 76690 2,602 -34,100 2,060 0,300 -88,7 5,4 0,8 Protection cover (gear) s 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings s 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings BWH s 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 <td< td=""><td>Safety crossing</td><td>s</td><td>76684</td><td>0,100</td><td>-15,000</td><td>5,000</td><td>-1,000</td><td>-1,5</td><td>0,5</td><td>-0,1</td></td<>	Safety crossing	s	76684	0,100	-15,000	5,000	-1,000	-1,5	0,5	-0,1
BWH walkway s 76690 2,602 -34,100 2,060 0,300 88,7 5,4 0,8 Protection cover (gear) s 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings s 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings BWH s 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	Walkway BW drive	s	76685	0,981	-32,900	-5,200	-1,500	-32,3	-5,1	-1,5
Protection cover (gear) s 76710 8,717 -33,900 -3,800 2,600 -295,5 -33,1 22,7 Gratings s 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings BWH s 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	BWH walkway	S	76690	2,602	-34,100	2,060	0,300	-88,7	5,4	0,8
Gratings S 76820 5,002 -16,000 2,000 0,200 -80,0 10,0 1,0 Gratings BWH 51,592 5 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0 0,0 Support operator cabin M 37650 0,003 -39,500 1,650 1,700 -1,1 0,3 0,3 Cylinder bearing chute back wall BWE M 38100 0,050 -29,000 7,500 7,000 -1,5 </td <td>Protection cover (gear)</td> <td>S</td> <td>76710</td> <td>8,717</td> <td>-33,900</td> <td>-3,800</td> <td>2,600</td> <td>-295,5</td> <td>-33,1</td> <td>22,7</td>	Protection cover (gear)	S	76710	8,717	-33,900	-3,800	2,600	-295,5	-33,1	22,7
Gratings BWH s 76830 0,749 -34,100 2,060 0,250 -25,5 1,5 0,2 winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,0 0,0 0,0 Support operator cabin M 37640 0,040 -28,600 7,950 7,000 -1,1 0,3 0,3 Cylinder bearing chute back wall BWE M 37650 0,003 -39,500 1,650 1,700 -0,1 0,0 0,0 Operator cabin levelling device M 38100 0,050 -29,000 7,500 7,000 -1,5	Gratings	S	76820	5,002	-16,000	2,000	0,200	-80,0	10,0	1,0
51,592 M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,0 <td>Gratings BWH</td> <td>S</td> <td>76830</td> <td>0,749</td> <td>-34,100</td> <td>2,060</td> <td>0,250</td> <td>-25,5</td> <td>1,5</td> <td>0,2</td>	Gratings BWH	S	76830	0,749	-34,100	2,060	0,250	-25,5	1,5	0,2
winch gear drivers cabin M 33100 0,821 -28,400 7,000 11,400 -23,3 5,7 9,4 mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0	51,592							0,0	0,0	0,0
mechanical parts for winch of drivers cabin M 33300 4,505 -29,000 7,500 11,400 -130,6 33,8 51,4 winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0 <t< td=""><td>winch gear drivers cabin</td><td>М</td><td>33100</td><td>0,821</td><td>-28,400</td><td>7,000</td><td>11,400</td><td>-23,3</td><td>5,7</td><td>9,4</td></t<>	winch gear drivers cabin	М	33100	0,821	-28,400	7,000	11,400	-23,3	5,7	9,4
winch rope drivers cabin M 35300 0,743 -29,000 7,500 8,000 -21,5 5,6 5,9 Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0	mechanical parts for winch of drivers cabin	М	33300	4,505	-29,000	7,500	11,400	-130,6	33,8	51,4
Bearing bucket wheel boom M 37610 4,081 0,000 0,000 0,00 0,0 0,0 0,0 Support operator cabin M 37640 0,040 -28,600 7,950 7,000 -1,1 0,3 0,3 Cylinder bearing chute back wall BWE M 37650 0,003 -39,500 1,650 1,700 -0,1 0,0 0,0 Operator cabin levelling device M 38100 0,050 -29,000 7,500 7,000 -1,5 0,4 0,4 Guide roller drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	winch rope drivers cabin	М	35300	0,743	-29,000	7,500	8,000	-21,5	5,6	5,9
Support operator cabin M 37640 0,040 -28,600 7,950 7,000 -1,1 0,3 0,3 Cylinder bearing chute back wall BWE M 37650 0,003 -39,500 1,650 1,700 -0,1 0,0 0,0 Operator cabin levelling device M 38100 0,050 -29,000 7,500 7,000 -1,5 0,4 0,4 Guide roller drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 I Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0.360 -573.0 -12.0 5.7	Bearing bucket wheel boom	М	37610	4,081	0,000	0,000	0,000	0,0	0,0	0,0
Cylinder bearing chute back wall BWE M 37650 0,003 -39,500 1,650 1,700 -0,1 0,0 0,0 Operator cabin levelling device M 38100 0,050 -29,000 7,500 7,000 -1,5 0,4 0,4 Guide roller drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 0,0 0,0 0,04 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 1 Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0 360 -573.0 -12.0 5 7	Support operator cabin	М	37640	0,040	-28,600	7,950	7,000	-1,1	0,3	0,3
Operator cabin levelling device M 38100 0,050 -29,000 7,500 7,000 -1,5 0,4 0,4 Guide roller drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 1 Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0.360 -573.0 -12.0 5 7	Cylinder bearing chute back wall BWE	М	37650	0,003	-39,500	1,650	1,700	-0,1	0,0	0,0
Guide roller drivers cabin M 38200 0,977 -28,600 4,400 6,400 -27,9 4,3 6,3 Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 1 Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0.360 -573.0 -12.0 5 7	Operator cabin levelling device	М	38100	0,050	-29,000	7,500	7,000	-1,5	0,4	0,4
Hydraulic drivers cabin M 48140 0,247 -29,000 7,500 7,000 -7,2 1,9 1,7 1 Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0.360 -573.0 -12.0 5 7	Guide roller drivers cabin	М	38200	0,977	-28,600	4,400	6,400	-27,9	4,3	6,3
M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle col. M 51310 15,789 -36,288 -0,760 0,360 -573,0 -12,0 5,7	Hydraulic drivers cabin	М	48140	0,247	-29,000	7,500	7,000	-7,2	1,9	1,7
1 Bucket wheel gear compl. M 51100 60,635 -36,500 -4,050 0,530 -2213,2 -245,6 32,1 1 Bucket wheel axle cpl. M 51310 15 789 -36 288 -0 760 0.360 -573.0 -12.0 5.7								0,0	0,0	0,0
1 Bucket wheel axle col. M 51310 15 789 -36 288 -0 760 0 360 -573 0 -12 0 5 7	1 Bucket wheel gear compl.	М	51100	60,635	-36,500	-4,050	0,530	-2213,2	-245,6	32,1
	1 Bucket wheel axle cpl.	М	51310	15,789	-36,288	-0,760	0,360	-573,0	-12,0	5,7
1 Eload bearing gear side	M	51220	2 022	26 424	2 190	0 422	110.1	66	12	
--	----	-------	---------	---------	--------	--------	----------	--------	-------	
1 Fixed bearing belt side	M	51320	0,576	25 005	2,100	0,435	20.7	1.6	0.1	
17 Buckote	M	51400	24.062	-35,903	0,760	0,170	-20,7	10.0	0,1	
1 Pucket wheel both	M	51400	42,505	-30,200	0,700	0,300	1540.0	-19,0	15.2	
1 Bucket wheel body	m	51900	42,443	-30,200	-0,700	0,300	-1540,2	-32,3	15,5	
2 Polt drives	M	61100	6 022	2 200	0.070	0 120	15.7	0,0	0,0	
2 Beit drives	M	61210	0,033	2,300	0,070	0,120	15,7	0,5	0,0	
Take up pullou	M	61220	4,102	2,100	0,005	0,105	105.0	0,3	1.2	
2 South mulleu	m	61230	4,007	47.056	2,103	0,490	-105,6	5,9	1,5	
3 Shub pulley	M	61270	1,227	-17,800	0,844	-0,243	-21,9	1,0	-0,3	
2 Shub pulley D268	M	61280	0,722	-16,360	0,785	-0,570	-11,8	0,6	-0,4	
20 Impact Idler ganand	M	61310	2,770	-33,840	1,405	0,700	-93,7	4,1	1,9	
31 Carrying idler garland	M	61320	3,720	-13,800	0,685	0,650	-51,3	2,5	2,4	
9 Return idler garland	M	61330	0,990	-20,300	0,940	-0,300	-20,1	0,9	-0,3	
Fixing of garlands	M	61340	0,250	-33,840	1,465	0,500	-8,5	0,4	0,1	
1 Control idler station	Μ	61350	0,348	-35,200	1,516	-0,577	-12,2	0,5	-0,2	
Take-up device	M	61400	0,320	-37,700	1,625	0,490	-12,1	0,5	0,2	
1 Scraper discharge pulley	М	61610	0,413	2,560	0,070	0,330	1,1	0,0	0,1	
1 Diagonal scraper	M	61630	0,261	-37,640	1,612	0,050	-9,8	0,4	0,0	
3 Steel scraper	М	61640	0,243	-18,000	0,850	-0,300	-4,4	0,2	-0,1	
24,900							0,0	0,0	0,0	
Spillage conveyor 1.1:	11		0201000				0,0	0,0	0,0	
1 Belt gear unit	Μ	65100	0,442	-12,400	2,340	-0,800	-5,5	1,0	-0,4	
1 Drive pulley	Μ	65210	0,444	-12,340	0,630	-0,800	-5,5	0,3	-0,4	
1 Return pulley	М	65220	0,412	1,950	0,073	-1,144	0,8	0,0	-0,5	
7 Carrying garland	Μ	65310	0,665	-3,900	0,300	-0,900	-2,6	0,2	-0,6	
1 idler station	М	64340	0,153	-10,250	0,540	-1,060	-1,6	0,1	-0,2	
Take up device	М	64400	0,025	-13,050	0,635	-0,800	-0,3	0,0	0,0	
1 Scraper discharge pulley	М	65610	0,071	2,080	0,060	-1,350	0,1	0,0	-0,1	
1 Diagonal scrapers	М	65620	0,261	-11,900	0,575	-0,890	-3,1	0,2	-0,2	
2,473							0,0	0,0	0,0	
THE STREET WAS AN ADDRESS OF							0,0	0,0	0,0	
1 Motor bucket wheel main drive 1150 kW	Е	81100	8,400	-32,200	-5,400	0,300	-270,5	-45,4	2,5	
2 Motor bucket wheel aux. Drive 22 kW	Е	81100	0,230	-35,500	-5,000	1,600	-8,2	-1,2	0,4	
1 Motor spillage conveyor 1.1	Е	81100	0,120	-12,300	-1,100	-0,800	-1,5	-0,1	-0,1	
1 Motor operators cabin winch	Е	81100	0,180	-28,600	7,950	11,400	-5,1	1,4	2,1	
Cables, lighting, heating	Е	81500	2,500	-17,100	1,000	3,500	-42,8	2,5	8,8	
Main cabin	Е	81820	4,252	-28,600	7,950	4,000	-121,6	33,8	17,0	
Hydraulik chute flap and take up con.1 comp.	E	84130	0,442	-38,400	1,660	0,600	-17,0	0,7	0,3	
Hydraulik drivers cabin	E	84140	0,247	-28,600	7,950	5,200	-7,1	2,0	1,3	
							0,0	0,0	0,0	
Cab winch spray system	V	91700	0,125	-28,400	7,000	11,400	-3,6	0,9	1,4	
Fire extinguishing system	V	94200	1,800	-21,600	0,800	0,500	-38,9	1,4	0,9	
Belt conveyor 1	V	95100	6,859	-18,500	1,120	0,300	-126,9	7,7	2,1	
Belt conveyor 1.1	V	95500	0,973	-5,200	0,350	-0,880	-5,1	0,3	-0,9	
Painting	V	97000	2,900	-27,000	0,000	0,800	-78,3	0,0	2,3	
Oil and grease	v	98000	0,616	-36,630	-3,350	0,000	-22,6	-2,1	0,0	
_						-	0,0	0,0	0,0	
sum			406,991	-26,693	-0,350	0,931	-10863,7	-142,5	379,0	
L			1							

BWB	Steel structure	S	191,078	Moment of inertia belonging to slewing centre
	Mech. equipment	Μ	186,269	G x (X1+dX) ² = 439223 tm ²
	El. equipment	E	16,371	_
	Miscellaneous	V	13,273	dx = -3,878 m
	sum		406,991	

	related to g	ed to ground, slew centre :		x2	y2	Z2			
				-4,864	0,000	18,983			
			G [t]	x2 [m]	y2 [m]	z2 [m]	G*x	G*y	G*z
							0,0	0,0	0,0
Mast 1	S	76210	8,966	-1,500	0,000	6,000	-13,4	0,0	53,8
Rope idler girder	S	76250	24,117	-3,900	0,000	15,300	-94,1	0,0	369,0
Trolley girder	S	76260	3,115	-5,300	0,000	19,300	-16,5	0,0	60,1
Tension rod BWB 50%	S	76410	8,178	-4,110	0,000	15,450	-33,6	0,0	126,4
4	14,376						0,0	0,0	0,0
Walkway mast 1	S	76610	1,659	-5,750	0,000	14,100	-9,5	0,0	23,4
Ladder mast 1	S	76620	1,159	-1,260	0,000	8,400	-1,5	0,0	9,7
Gratings	S	76810	0,756	-5,600	0,000	13,900	-4,2	0,0	10,5
							0,0	0,0	0,0
4x3 rope roller set	M	35120	8,504	-4,110	0,000	15,450	-35,0	0,0	131,4
Winch ropes partly	M	35160	2,043	-4,110	0,000	15,450	-8,4	0,0	31,6
Bearing mast - bucket wheel boom	M	37620	0,360	0,000	0,000	0,000	0,0	0,0	0,0
1 Hoist mast 1 1.6 t	M	45200	0,450	-5,100	0,000	18,500	-2,3	0,0	8,3
							0,0	0,0	0,0
Painting	V	97000	0,900	-3,000	0,000	13,600	-2,7	0,0	12,2
Oil and grease	v	98000	0,320	-3,000	0,000	13,600	-1,0	0,0	4,4
sum			60,527	-3,670	0,000	13,891	-222,2	0,0	840,8
Steel structure	s		47,950		Momen	t of inertia	belonging	j to slewi	ng centre
Mech. equipme	nt M		11,357		G x (X	1+dX)^2 =	4487	tm^2	
El, equipment	E		0.000			•			

coordinates referring to pivot mast 1

Mast 1

	- 1
Steel structure	
Mech. equipment	
El. equipment	
Miscellaneous	

sum

٧

1,220 60,527

dx = -4,864 m

Mast 2	coordinates referring to pivot mast 2									
	relate	d to	ground, s	slew centre	х3	уЗ	z3			
					3,878	0,000	22,330			
				G [t]	x3 [m]	y3 [m]	z3 [m]	G*x	G*y	G*z
								0,0	0,0	0,0
Mast 2 main frame		S	74210	8,687	0,000	0,000	9,145	0,0	0,0	79,4
Hoist beam		S	74220	6,395	-3,800	-2,600	5,600	-24,3	-16,6	35,8
Rope idler girder		S	74250	31,180	-0,150	0,000	12,550	-4,7	0,0	391,3
Trolley girder		S	74260	3,099	0,500	0,000	17,900	1,5	0,0	55,5
Walkway mast 2		S	74610	2,805	1,300	0,000	9,100	3,6	0,0	25,5
Maintenance walkway		S	74620	0,404	-1,250	-0,900	3,100	-0,5	-0,4	1,3
Graiting		S	74800	0,817	1,400	0,000	9,100	1,1	0,0	7,4
Tension rods CWB 1/2		S	75200	6,410	1,625	0,000	13,847	10,4	0,0	88,8
	59,797							0,0	0,0	0,0
4 return sheaves mast2		М	35110	3,020	0,000	0,000	11,745	0,0	0,0	35,5
4x3 rope roller set		М	35120	8,504	0,000	0,000	14,745	0,0	0,0	125,4
4 return sheaves mast2		М	35130	2,959	0,675	0,000	13,145	2,0	0,0	38,9
Winch rope partly		М	35160	2,589	0,000	0,000	14,745	0,0	0,0	38,2
Bearing mast - counterweight boom		М	37420	0,390	0,000	0,000	0,000	0,0	0,0	0,0
1 Hoist slewing centre 5,2t		М	45100	0,450	3,878	-0,900	4,200	1,7	-0,4	1,9
1 Hoist mast 2 1.6 t		М	45200	0,450	1,512	0,000	17,300	0,7	0,0	7,8
								0,0	0,0	0,0
Painting		V	97000	0,900	0,000	0,000	12,000	0,0	0,0	10,8
Oil and grease		v	98000	0,305	0,000	0,000	11,900	0,0	0,0	3,6
sum				79,364	-0,105	-0,219	11,933	-8,3	-17,4	947,0
Steel structur	e	S		59,797		Momen	t of inertia	belonging	to slewi	ng centre
Mech, equip	nent	М		18,362		G x (X	1+dX)^2 =	1256	tm^2	
El. equipment	t	E		0,000			- / - [
Miscellaneou	s	V		1,205			dx =	3,878	m	
sum				79,364				53) -		

Mast 2

02.10.2008 - 217 -

coordinates referring to slew centre / top surface of platform

Counter weight boom

related	to g	round, sl	ew centre :	x4	y4	z4			
				0,000	0,000	13,400			
			G [t]	x4 [m]	y4 [m]	z4 [m]	G*x	G*y	G*z
							0,0	0,0	0,0
Upper girder 1-4	S	75110	23,898	16,200	0,000	9,600	387,1	0,0	229,4
Upper girder 5-6	S	75120	10,811	26,500	0,000	11,800	286,5	0,0	127,6
Lower girder 1-6	S	75130	16,985	18,500	0,000	6,070	314,2	0,0	103,1
Ballastbox	S	75150	42,336	34,200	0,000	9,700	1447,9	0,0	410,7
Tension rods CWB 1/2	S	75200	6,410	23,535	0,000	12,816	150,9	0,0	82,2
100,440							0,0	0,0	0,0
E-house and air compressor house platform	S	75510	7,446	20,000	0,000	6,400	148,9	0,0	47,7
Walkway E-house	S	75520	3,577	21,900	0,000	6,800	78,3	0,0	24,3
Winch house frame left	S	75530	7,466	31,200	-1,950	12,800	232,9	-14,6	95,6
Winch house frame right	S	75540	7,709	31,200	1,950	12,800	240,5	15,0	98,7
Container platform	S	75550	1,128	10,789	1,456	3,550	12,2	1,6	4,0
Hoist beam 0,5t	S	75560	0,937	10,789	2,000	5,500	10,1	1,9	5,2
Access tower / E-house	S	75610	2,602	9,600	-0,580	6,500	25,0	-1,5	16,9
Access winch platform	S	75620	3,633	25,000	-0,200	11,500	90,8	-0,7	41,8
Railling ballast box	S	75630	0,282	37,100	0,000	12,600	10,5	0,0	3,6
Winch house	S	75700	5,500	30,900	0,000	15,900	170,0	0,0	87,5
Gratings	S	75800	3,704	20,000	0,000	7,000	74,1	0,0	25,9
43,984							0,0	0,0	0,0
2 Winch drive	М	31100	6,996	31,200	0,409	13,500	218,3	2,9	94,4
Winch mechanical parts compl. 31200-31900	М	31200	24,470	32,400	0,409	13,950	792,8	10,0	341,4
winch rope on drum	М	35160	3,525	32,400	0,409	13,950	114,2	1,4	49,2
winch rope fix point	М	35160	0.227	24,986	-0,410	11,978	5,7	-0,1	2,7
Rope overload guard	М	35170	0.073	24,986	-0.410	11,978	1.8	0.0	0.9
1 Cain hoist 0.5 t on container platform	М	45300	0,008	10,789	2,000	6,000	0,1	0.0	0.0
	10000						0.0	0.0	0.0
Slewing crane for ballast boom	м	41100	10,742	37,500	0.000	18,500	402.8	0.0	198.7
	111						0.0	0.0	0.0
2 Motor main winch 250 kW	E	81100	6,900	30,050	0.409	13,460	207.3	2.8	92.9
E-house substructure	Е	81810	12,500	21.085	0.000	8,500	263.6	0.0	106.3
E-house equipment incl. 3000kg cable	F	81200	13 000	21.085	0.000	8 100	274.1	0.0	105.3
Transformer 2500 kVA	E	81310	6.400	29,498	-1.480	8,670	188.8	-9.5	55.5
Transformer 630 kVA	E	81310	2 250	29 498	1.540	8,260	66.4	3.5	18.6
Cables lighting heating	E	81500	10,000	17,000	0.000	12,000	170.0	0.0	120.0
Rone overload cylinder	F	84120	1 020	22 160	-0.410	13,600	22.6	-0.4	13.9
Rope overload aggregat and piping	F	84120	0.150	27 300	0,000	12,800	41	0.0	19
Name plate	F	89100	0,580	21,500	0,000	8,000	12.5	0,0	4.6
iano plato	-	00100	0,000	21,000	0,000	0,000	0.0	0,0	0.0
Winch pinion spray system	v	91500	0 310	32 400	0.409	13 950	10.0	0,0	43
Fire extinguishing system	v	94200	1 500	24 000	0,400	9,000	36.0	0.0	13.5
Painting	v	97000	3 200	17 300	0,000	8,600	55.4	0,0	27.5
	v	0000	0,500	21,000	0,000	13,400	15.5	0,0	67
on and grease	ř	30000	0,500	51,000	0,000	13,400	15,5	0,0	0,7
							0,0	0,0	0,0
sum			248,775	26,296	0,050	10,701	6541,9	12,5	2662,2
Steel structure	S		144,424		Momen	t of inertia	belonging	to slewi	ng centre
Mech. equipment	М		46,041		Gx(X	1+dX)^2 =	185069	tm^2	

Steel structure	S	144,424	Moment of inertia belonging to slewing centre
Mech. equipment	M	46,041	G x (X1+dX)^2 = 185069 tm^2
El. equipment	E	52,800	
Miscellaneous	V	5,510	dx = 0,000 m
sum		248,775	

Winch rope:			8,384	t			
	distribution		Mast1	Mast 2	fixing	winch drum	i
		m	t	t	t	t	sum
	horizontal position:	13,00	1,794	2,340	0,227	4,023	8,384
	high position	8,40	1,167	1,713	0,227	5,277	8,384
	ground position	18,10	2,490	3,035	0,227	2,632	8,384
	lowest position:	19,80	2,721	3,267	0,227	2,169	8,384
	running rope					3,108	
			Mast1	Mast 2	fixing	vinch drum	
for this stability calcu	lation mean value will be co	onsidered :	2,043	2,589	0,227	3,525	8,384

Ballast				coordinates	referring to	o slew cer	tre / top si	urface of pla	atform	
	r	elated to	ground, s	lew centre	x4	y4	z4			
					0,000	0,000	13,400			
				G [t]	x4 [m]	y4 [m]	z4 [m]	G*x	G*y	G*z
								0,0	0,0	0,0
Ballast		V	96000	221,000	34,123	0,000	8,250	7541,2	0,0	1823,3
sum				221,000	34,123	0,000	8,250	7541,2	0.0	1823,3
s M E N s	Steel structure Mech. equipment El. equipment Miscellaneous sum	S M E V		0,000 0,000 0,000 221,000 221,000		Momen G x (X	t of inertia 1+dX)^2 = dx =	a belonging 257328 0,000	to slew tm^2 m	ing centre
for design of superstructu	re:									
Ballast reserve of			provide :	25,00	t =	21,2387	t addition	al at centre	of bucke	t wheel
				11,312%						
Note : Ballast weight for I	basic load cases in	AGS				G =	221,00	t		

Platform			coordinates	referring to	centre of	f main ball r	ace bearin	g	
related	to g	round, sl	ew centre :	x5	y5	z5			
				0,000	0,000	11,575			
			G [t]	x5 [m]	y5 [m]	z5 [m]	G*x	G*y	G*z
							0,0	0,0	0,0
Platform main structure	S	73100	105,258	0,050	0,000	1,300	5,3	0,0	136,8
Locking device	S	73200	1,336	0,000	0,000	1,100	0,0	0,0	1,5
Transfer chute	S	73410	9,341	0,600	0,000	3,500	5,6	0,0	32,7
Transfer chute lower part	S	73420	2,798	0,000	0,000	0,500	0,0	0,0	1,4
Baffle plate	S	73430	5,169	0,550	0,000	3,500	2,8	0,0	18,1
Protection plates	S	73510	3,310	1,100	0,000	1,700	3,6	0,0	5,6
Walkway platform	S	73610	5,732	0,000	0,000	-0,150	0,0	0,0	-0,9
Upper walkway	S	73620	5,295	3,400	0,000	2,400	18,0	0,0	12,7
Stair platform	S	73630	1,234	-3,550	0,000	0,900	-4,4	0,0	1,1
Gratings	S	73800	4,193	1,700	0,000	1,050	7,1	0,0	4,4
143,666							0,0	0,0	0,0
Slew assembly :							0,0	0,0	0,0
2 slewing drive	Μ	21100	10,316	1,700	0,000	1,060	17,5	0,0	10,9
50% Ball race with toothed rim	М	21300	16,767	0,000	0,000	0,000	0,0	0,0	0,0
Adjustment baffle plate	М	38300	0,558	2,250	0,000	2,300			
27,641							0,0	0,0	0,0
2 Motor conveyor drive C1	Е	81100	4,500	0,950	0,000	4,000	4,3	0,0	18,0
2 Motor slew drive 75 kW	Е	81100	2,070	0,000	0,000	1,770	0,0	0,0	3,7
							0,0	0,0	0,0
Oil lubrication for ball race	V	91400	1,022	0,000	0,000	0,000	0,0	0,0	0,0
Slew pinion spray system	٧	91600	0,587	0,000	0,000	0,000	0,0	0,0	0,0
Limit switch BWE	V	93100	0,507	0,000	0,000	3,600	0,0	0,0	1,8
Painting	V	97000	1,500	0,000	0,000	1,100	0,0	0,0	1,7
Oil and grease	V	98000	0,220	0,000	0,000	1,300	0,0	0,0	0,3
							0,0	0,0	0,0
01170			181 713	0 330	0.000	1 375	50.0	0.0	240.9
5 uu			101,115	0,000	0,000	1,315	33,5	0,0	245,0

Steel structure	S	143,666	Moment of inertia	belongin	g to slewing ce	ntre
Mech. equipment	M	27,641	G x (X1+dX)^2 =	140	tm^2	
El. equipment	E	6,570				
Miscellaneous	V	3,836	dx =	0,000	m	
sum		181,713				
30ITI		101,715				

A3_EPS 3092 BWE_LU_Final stability.xls,	Weights_B
---	-----------

Substructure		coordinat	es related to	slew centr	re / suppor	ting balls			
related	to g	ground, s	lew centre :	x6	y6	z6			
				0,000	0,000	3,850			
	-								
			G [t]	x6 [m]	y6 [m]	z6 [m]	G*X	G*y	G*z
Substanting unit d		70404	26.040	7 400	0.000	2 200	0,0	0,0	0,0
Substructure unit 1	2	72101	20,810	-7,400	0,000	3,300	-198,4	0,0	88,5
Substructure unit 2	S	72102	28,213	-4,100	0,000	4,000	-115,7	0,0	112,9
Substructure unit 4	2 0	72103	11,089	0,200	0,000	1,700	400 6	0,0	18,9
Substructure unit 4	2	72104	42,002	7 450	0,000	0,200	400,0	0,0	25
Substructure unit 5+7	0	72105	0,407	1,400	0,000	4,000	111 5	0,0	242.0
Substructure unit 0+7	0 0	72100	40 049	5,900	0,000	3,200	294.5	0,0	157.0
Substructure unit 10+11	2	72107	9,040	7,400	0,000	2,070	65.0	0,0	197,0
Substructure unit 12-15	2 0	72100	3 951	0,000	0,000	6 900	0.0	0,0	27.3
Substructure unit 16	5	72110	7 233	4,800	0,000	7 200	34.7	0,0	52 1
Substructure unit 17-24	5	72111	10.877	-4 100	0,000	1 035	-44.6	0.0	11.3
282,809	~		10,011	4,100	0,000	1,000	0.0	0.0	0.0
							0.0	0.0	0.0
Conveyor frame conv 2	S	72300	20,431	7 200	0.000	6 500	147.1	0.0	132.8
Feeding chute	S	72410	4,909	1.000	0.000	6,200	4.9	0.0	30.4
Discharge chute 1	S	72420	1.398	18,000	0.000	9,000	25.2	0.0	12.6
Discharge chute 2	S	72430	0,640	18,000	0,000	9,000	11,5	0.0	5,8
Baffle plate	S	72440	2,382	18,200	0,000	9,000	43,4	0.0	21.4
Walkways and platforms	S	72600	27,691	1,500	0,000	4,000	41,5	0,0	110,8
crew room, mech. Workshop, complete	S	72710	20,000	-3,050	7,500	3,300	-61,0	150,0	66,0
Hydraulic house	S	72720	2,450	-4,800	-7,000	3,300	-11,8	-17,2	8,1
Fire fighting room	S	72730	7,000	-7,150	0,000	3,300	-50,1	0,0	23,1
Gratings	S	72800	7,996	1,500	0,000	4,000	12,0	0,0	32,0
							0,0	0,0	0,0
conveyor 2:							0,0	0,0	0,0
1 Conveyor drive	М	62100	4,399	16,100	2,200	8,075	70,8	9,7	35,5
1 Drive pulley	М	62210	3,472	16,310	0,000	8,075	56,6	0,0	28,0
1 Return pulley	М	62220	2,701	-2,676	0,000	3,164	-7,2	0,0	8,5
2 Snub pulley	М	62270	0,818	1,160	0,000	3,510	0,9	0,0	2,9
10 Feed garland	М	62310	1,385	2,370	0,000	4,800	3,3	0,0	6,6
12 Carrying idler garland	М	62320	1,440	10,300	0,000	6,830	14,8	0,0	9,8
3 Return idler garlands	М	62330	0,330	9,420	0,000	5,700	3,1	0,0	1,9
Fixing of garlands	М	62340	0,148	2,370	0,000	4,800	0,4	0,0	0,7
Control idler station hydr.	М	62350	0,348	0,920	0,000	3,800	0,3	0,0	1,3
Take-up device	М	62400	0,207	-2,300	0,000	3,280	-0,5	0,0	0,7
Impact pulleys	М	62500	10,424	-0,400	0,000	5,780	-4,2	0,0	60,3
1 Scraper discharge pulley	М	62610	0,413	16,850	0,000	7,700	7,0	0,0	3,2
1 Plough scraper	M	62630	0,262	-1,400	0,000	3,180	-0,4	0,0	0,8
2 Steel scraper	М	62640	0,162	1,100	0,000	3,500	0,2	0,0	0,6
26,509		47000	4 45 4	7 450	0.000	0.000	0,0	0,0	0,0
2 Pell evened	M	17300	1,454	7,450	0,000	0,000	10,8	0,0	0,0
2 Ball support	M	18140	8,380	7,450	0,000	0,000	02,5	0,0	120.5
2 Chain hoist workshop 0.5 t	M	45200	0.024	2,050	7,500	2 200	0,0	0,0	129,5
2 Chain hoist workshop 0,5 t	M	45300	0,024	-3,050	7,500	3,300	-0,1	0,2	0,1
	m	40400	0,004	-4,000	-7,000	3,300	-0,3	-0,4	0,2
1 Motor crawler steering	F	81100	0.615	-4 800	-7 000	2 800	-3.0	4.3	17
1 Motor conveyor drive C2 315 kW	H	81100	2 400	13,950	2 195	8 075	33.5	53	19.4
E-House superstructure	F	81810	10,000	-0.160	-8,195	3,400	-1.6	-82.0	34.0
E-House equipment	F	81200	8 500	-0 160	-8 195	3 000	-14	-69.7	25.5
cables, lighting, heating.	E	81500	8,000	0.000	0.000	2,000	0.0	0.0	16.0
cable chain	E	81700	1,200	0.000	0.000	7.000	0.0	0.0	8.4
	1			-,	-1-30	.,	0.0	0.0	0.0
Hydraulic aggregat	E	84110	1.000	-4.800	-7.000	2.800	-4.8	-7.0	2.8
	_		1,000		1		1		2,0

A3_EPS 3092 BWE_LU_Final stability.xls, Weights_B

sum			503,088	2,082	-0,078	3,709	1047,2	-39,1	1865,7
							0,0	0,0	0,0
Oil and greasing	V	98000	1,900	4,000	-2,000	3,500	7,6	-3,8	6,7
Hydraulic oil	v	98000	0,600	1,200	0,000	0,000	0,7	0,0	0,0
Painting	V	97100	5,600	0,700	0,000	4,000	3,9	0,0	22,4
Belt for conveyor 2	V	95200	5,227	6,800	0,000	5,620	35,5	0,0	29,4
water	V	90000	10,000	-6,350	0,000	2,000	-63,5	0,0	20,0
water tank 10m ³	V	90000	0,900	-6,350	0,000	2,000	-5,7	0,0	1,8
Fire extinguishing system	V	94200	2,400	0,000	0,000	3,600	0,0	0,0	8,6
Compressor plant and piping	V	94100	4,011	-8,450	-5,700	2,800	-33,9	-22,9	11,2
Lubrication system	v	91200	2,432	2,250	0,000	5,800	5,5	0,0	14,1
10010	-	00400	0,020	0,200	0,400	2,000	0.0	0.0	0.0
Tools	E	89400	0.328	-6 250	6 400	2 600	-21	21	0.9
Diesel genrator	E	86100	1,100	-3,700	2,200	3,000	-4.1	2.4	3.3
Pipes and hoses	E	84110	0,475	-0,900	-3,500	1,400	-0,4	-1.7	0,7
Hydraulic cylinder steering	E	84110	5,500	3,000	0,000	0,000	16,5	0,0	0,0

Steel structure	S	377,706
Mech. equipment	M	53,194
El. equipment	E	39,118
Miscellaneous	V	33,070
sum		503,088

A3-14

Travelling mechanism

fixed side 2 Travel drive 2 Drive sprocket with shaft 2 Take-up tumbler	м		GH	0,000	0,000	0,000			
fixed side 2 Travel drive 2 Drive sprocket with shaft 2 Take-up tumbler	м		GII						
fixed side 2 Travel drive 2 Drive sprocket with shaft 2 Take-up tumbler	м			x7 [m]	v7 [m]	77 [m]	G*x	G*v	G*7
2 Travel drive 2 Drive sprocket with shaft 2 Take-up tumbler	М		U I I	Yi [u]	Ji [m]	The find	0.0	0.0	0.0
2 Drive sprocket with shaft 2 Take-up tumbler		11100	14,970	-8,150	0.000	1,175	-122.0	0.0	17.6
2 Take-up tumbler	М	11310	8 130	0.000	0.000	1.175	0.0	0.0	9.6
	M	11320	4,728	0.000	0.000	1.175	0.0	0.0	5.6
mech. Parts for crawler frame	M	11330	Included	in other p	arts		-,-	-,-	-1-
16 2 - Wheel bogie	M	11410	10.592	0.000	0.000	0.500	0.0	0.0	5.3
8 4 - Wheel bogie	M	11430	11,936	0.000	0.000	0.750	0.0	0.0	9.0
4 8 - Wheel bogie	M	11440	15 888	0.000	0.000	1,100	0.0	0.0	17.5
2 x 53 Crawler chain	М	11500	62 243	0.000	0.000	1,700	0.0	0.0	105.8
2 x 3 Supporting roller	M	11600	1,170	0.000	0.000	3.000	0.0	0.0	3.5
2 Cover for crawler	м	11800	not existe	ence	-,		-,-	-,-	-,-
2 Crawler frame	М	11900	60,250	0.000	0.000	1.850	0.0	0.0	111.5
1 Axle for fixed crawler	M	18110	15 586	0.000	0.000	1,950	0.0	0.0	30.4
1 Support fixed crawler	M	18120	3.049	-8,150	0.000	3,150	-24.8	0.0	9.6
1 Fixed support	м	18210	18,719	0.000	0.000	2 100	0.0	0.0	39.3
	227.261	10210	10,710	0,000	0,000	2,100	0,0	0,0	00,0
steering side									
4 Travel drive	М	11100	29.940	7,450	0.000	1,175	223.1	0.0	35.2
4 Drive sprocket with shaft	м	11310	16 260	0.000	0,000	1 175	0.0	0.0	19.1
4 Take-up tumbler	M	11320	9.456	0.000	0,000	1 175	0.0	0.0	11.1
mech. Parts for crawler frame	M	11330	Included	in other p	arts	.,	0,0	0,0	
32.2 - Wheel bogie	M	11410	21,184	0.000	0.000	0.500	0.0	0.0	10.6
16.4 - Wheel bogie	M	11430	23.872	0.000	0,000	0.750	0.0	0.0	17.9
8.8 - Wheel bogie	M	11440	31 776	0,000	0,000	1 100	0.0	0.0	35.0
4 x 53 Crawler chain	M	11500	124 486	0,000	0,000	1 700	0.0	0.0	211.6
4 x 3 Supporting roller	м	11600	2 340	0,000	0,000	3,000	0.0	0.0	7.0
4 Cover for crawler	M	11800	not eviste	ence	0,000	0,000	0,0	0,0	1,0
4 Crawler frame	M	11900	120 500	0.000	0.000	1.850	0.0	0.0	222.9
2 Track wheel steering BWE	M	17400	0,706	7 450	0,000	3,850	53	0,0	27
2 Axle for steered crawler	M	18110	31 172	0,000	0,000	1 950	0.0	0.0	60.8
2 Steering arm	M	18230	64 436	7.450	0,000	2 100	480.0	0,0	135.3
2 Otecning ann	76 128	102.50	04,450	1,450	0,000	2,100	400,0	0,0	155,5
2 Motor crawler drive BWE	70,120 F	81100	2 400	-8 150	0.000	1 580	-19.6	0.0	3.8
4 Motor crawler drive BWE	-	81100	4 800	0,000	0,000	1,580	0.0	0,0	7.6
cables lighting heating	-	81500	1 200	0,000	0,000	1,500	0,0	0,0	1.9
cables, lighting, fleating	-	01500	1,200	0,000	0,000	1,500	0,0	0,0	0,0
Lubricating system		91100	2 507	2 250	0.000	1 600	5.6	0,0	4.0
Painting		97000	3,200	0,000	0,000	1,000	0,0	0,0	5.2
		08000	0,500	0,000	0,000	1,000	0,0	0,0	0,0
Unis allu grease	v	30000	0,000	0,000	0,000	1,000	0,0	0,0	0,9
							0,0	0,0	0,0
Sum			718.097	0.763	0.000	1.611	547.6	0.0	1157.1

		186,730
Steel structure	S	0,000
Mech. equipment	M	703,390
El. equipment	E	8,400
Miscellaneous	V	6,307
sum		718,097

186,730 t = weight of crawler chains

coordinates referring to centre of ball race / ground level

Coordinate systems belonging to main coordinate system

	Point	x [m]	y [m]	z [m]
pivot bucket wheel boom	5	-3,878	0,000	15,250
pivot mast 1	4	-4,864	0,000	18,983
pivot mast 2	11	3,878	0,000	22,330
support at top of platform	16	0,000	0,000	13,400
main ball race bearing	17	0,000	0,000	11,575
supporting balls	19	0,000	0,000	3,850
ground level	20	0,000	0,000	0,000

Summery of movable weights at pivot bucket wheel boom coordinates belonging to pivot bucket wheel boom

coordinates belonging to provide activity boom									
Grad	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z		
0	406,991	-26,693	-0,350	0,931	-10863,7	-142,5	379,0		
	60,527	-4,656	0,000	17,624	-281,8	0,0	1066,7		
0	467,518	-23,840	-0,305	3,092	-11145,6	-142,5	1445,7		
13,55	467,518	-22,452	-0,305	8,591	-10496,9	-142,5	4016,2		
-14,60	467,518	-23,850	-0,305	-3,017	-11150,1	-142,5	-1410,4		
-19,52	467,518	-23,503	-0,305	-5,051	-10988,1	-142,5	-2361,5		
	Grad 0 13,55 -14,60 -19,52	Grad G [t] 0 406,991 60,527 0 0 467,518 13,55 467,518 -14,60 467,518 -19,52 467,518	Grad G [t] x [m] 0 406,991 -26,693 60,527 -4,656 0 467,518 -23,840 13,55 467,518 -22,452 -14,60 467,518 -23,850 -19,52 467,518 -23,503	Grad G [t] x [m] y [m] 0 406,991 -26,693 -0,350 60,527 -4,656 0,000 0 467,518 -23,840 -0,305 13,55 467,518 -22,452 -0,305 -14,60 467,518 -23,850 -0,305 -19,52 467,518 -23,503 -0,305	Grad G [t] x [m] y [m] z [m] 0 406,991 -26,693 -0,350 0,931 60,527 -4,656 0,000 17,624 0 467,518 -23,840 -0,305 3,092 13,55 467,518 -22,452 -0,305 8,591 -14,60 467,518 -23,850 -0,305 -3,017 -19,52 467,518 -23,503 -0,305 -5,051	Grad G [t] x [m] y [m] z [m] G * x 0 406,991 -26,693 -0,350 0,931 -10863,7 60,527 -4,656 0,000 17,624 -281,8 0 467,518 -23,840 -0,305 3,092 -11145,6 13,55 467,518 -22,452 -0,305 8,591 -10496,9 -14,60 467,518 -23,850 -0,305 -3,017 -11150,1 -19,52 467,518 -23,503 -0,305 -5,051 -10988,1	Grad G[t] x [m] y [m] z [m] G*x G*y 0 406,991 -26,693 -0,350 0,931 -10863,7 -142,5 60,527 -4,656 0,000 17,624 -281,8 0,0 0 467,518 -23,840 -0,305 3,092 -11145,6 -142,5 13,55 467,518 -22,452 -0,305 8,591 -10496,9 -142,5 -14,60 467,518 -23,850 -0,305 -3,017 -11150,1 -142,5 -19,52 467,518 -23,503 -0,305 -5,051 -10988,1 -142,5		

Summery of Weights at top and centre platform dinatos holonging to contro platform

	cooldinates belonging to centre platform									
	Grad	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z		
Bucket wheel boom + Mast 1 horizontal	0	467,518	-27,718	-0,305	4,942	-12958,6	-142,5	2310,7		
Bucket wheel boom + Mast 1 high	13,55	467,518	-26,330	-0,305	10,441	-12309,9	-142,5	4881,1		
Bucket wheel boom + Mast 1 planum	-14,60	467,518	-27,728	-0,305	-1,167	-12963,2	-142,5	-545,5		
Bucket wheel boom + Mast 1 low	-19,52	467,518	-27,381	-0,305	-3,201	-12801,1	-142,5	-1496,5		
Mast 2		79,364	3,773	-0,219	20,863	299,5	-17,4	1655,8		
Counterweight boom		248,775	26,296	0,050	10,701	6541,9	12,5	2662,2		
Ballast		221,000	34,123	0,000	8,250	7541,2	0,0	1823,3		

Weights at top and centre platform

Loads at supporting balls	BWB hor.	0	1016,657	1,401	-0,145	8,313	1423,9	-147,4	8451,9
Loads at supporting balls	BWB high	13,55	1016,657	2,039	-0,145	10,842	2072,6	-147,4	11022,4
Loads at supporting balls	BWB plan.	-14,60	1016,657	1,396	-0,145	5,504	1419,4	-147,4	5595,7
Loads at supporting balls	BWB low	-19,52	1016,657	1,555	-0,145	4,569	1581,4	-147,4	4644,7

Summery of Weights at main ball race coordinates belonging to centre of main ball race

		Grad	G [t]	x [m]
Loads at supporting balls	BWB hor.	0	1016,657	1,401
Loads at supporting balls	BWB high	13,55	1016,657	2,039
Loads at supporting balls	BWB plan.	-14,60	1016,657	1,396
Loads at supporting balls	BWB low	-19,52	1016,657	1,555
Platform			181,713	0,330

Weights at main ball race

-									
Loads at main ball race	BWB hor.	0	1198,370	1,238	-0,123	8,810	1483,8	-147,4	10557,1
Loads at main ball race	BWB high	13,55	1198,370	1,780	-0,123	10,955	2132,5	-147,4	13127,6
Loads at main ball race	BWB plan.	-14,60	1198,370	1,234	-0,123	6,426	1479,3	-147,4	7701,0
Loads at main ball race	BWB low	-19,52	1198,370	1,370	-0,123	5,633	1641,3	-147,4	6749,9
				S					

Moment of inertia belonging to slewing centre at main ball race

Bucket wheel boom horizontal

G x X^2 = 887503 tm^2

y [m]

0.000

z [m]

1,375

-0,145 10,138

-0,145 12,667

-0,145 7,329

П-33

G*x G*y

-0,145 6,394 1581,4 -147,4 6500,1

59,9

1423,9 -147,4 10307,3

2072,6 -147,4 12877,8

1419,4 -147,4 7451,1

0,0

G*z

249,8

Weights distributed according to assembly group

Description		assembly gro	G[t]	
		from	to	
Travelling mechani	ism	10000	11999	569,722
Crawler 2 for hopp	per (fixed crawler)	12000	12999	64,736
Crawler 3 for hopp	per (steering crawler)	13000	13999	128,622
2 Crawler steering	g BWE	17000	18999	178,485
Slewing mechanism		21000	29999	44,905
Rope systemes and	bearings	30000	39999	90,786
Cranes, hoist devi	ices	40000	49999	23,391
Bucket wheel head		50000	59999	147,429
Belt conveyor syst	tem	60000	69999	129,952
Steel structure		70000	79999	1536,640
	Bridge	71000	71999	311,533
	Substructure	72000	72999	384,896
	Platform	73000	73999	143,666
	Tower with mast	74000	74999	53,387
	Ballast boom	75000	75999	150,834
	Bucket wheel boom	76000	76999	239,028
	Loading belt boom	77000	77999	76,369
	Main frame loading unit	79000	79999	176,927
Electrical, hydraulical		80000	89999	238,882
Special components, accessories		90000	99999	327,833
	Ballast	96000	96000	221,000
Summary		10000	99999	3481,382

Summary of weights :

Weights excavator

Steel structure	964,621	t
Mech. equipment	1046,254	t
El. equipment	123,259	t
Miscellaneous	64,421	t
Ballast	221,000	t
sum	2419,555	t

Weights bridge

Steel structure	318,723	t
Mech. equipment	67,245	t
El. equipment	19,116	t
Miscellaneous	24,393	t
sum	429,477	t

Weights loading unit

sum	632,351	t
Miscellaneous	18,019	ť
EL equipment	96 507	t
Mech. equipment	264,529	t
Steel structure	253,296	t

Total weights : Bucket wheel excavator system

Steel structure	1536,640	t
Mech. equipment	1378,028	t
El. equipment	238,882	t
Miscellaneous	106,833	t
Ballast	221,000	t
sum	3481,382	t
	-	-

Note : weight of turn table bridge is listed in weights bridge !

Limit of winch rope forces

The cut-off value for A and Z will be adjusted in the winch rope system.

Loads see	AGS :	V4; wincl	n ropes		A	GS from :	02.1	0.2008
number of reevings 24					Low	Hor.	High	
		Positions of	f bucket wh	eel boom :	-19,520	0,00	13,547	Grad
Load cases		Position in	AGS		3	1	2	
Dead load		E		S =	242,1	233,2	223,8	kN
Normal tangen	tial force	U_front		S =	44,8	44,8	44,6	kN
Normal radial f	orce	UR_front		S =	0,0	0,0	0,0	kN
Normal tangen	tial force	U_low		S =	20,3	6,5	-2,6	kN
Normal radial f	force	UR_low		S =	0,0	0,0	0,0	kN
Material load		F1		S =	14,4	14,3	14,0	kN
Incrustation co	nveyor	V1		S =	1,4	1,4	1,4	kN
Incrustation bu	icket wheel	VO		S =	14,8	14,9	14,8	kN
Blockage buck	et wheel chute	VV 1		S =	44,9	44,1	42,9	kN
Inclination	5,0%	NxE		S =	2,6	-1,5	-4,3	kN
Inclination	5,0%	NxF1		S =	0,2	0,0	-0,2	kN
Inclination	5,0%	NxV1		S =	0,0	0,0	0,0	kN
Inclination	5,0%	NxV0		S =	0,3	0,0	-0,2	kN
Inclination	5,0%	NxVV1		S =	0,6	-0,2	-0,7	kN
Wind in operat	ion 0,25	WX		S =	0,9	-0,7	-1,8	kN
Snow and ice		Snow		S =				kN
Inclination	5,0%	NxSnow		S =				kN
Snow and ice	out of Operation	Snow_out		S =				kN
Inclination	5,0%	NxSnow o		S =				kN
Standard load	case	Z0	1000 kN	S Z0 =	75,4	75,9	75,2	kN
Increase factor	r from F1 into V1		µV1 =	0,1000				
Increase factor	r from N into NN		µNN =	2,0000				
Increase factor	r from W into WW		µWW =	3,2400				
Increase factor	r from F into FF		µFF =	1,2109				
Increase factor	r from U Into UU		μου =	1,3043				
Resultant leve	r arm to winch rop	es in AGS		a =	18,909	19,912	19,524	m
				C min -	228.6	224.0	017.7	LN
E - ADS(INXE) - ADS(VVX)			51111-	230,0	231,0	217,7	KIN
Winch rope for	ce							
(H1b)	In operation	n	max	SH=	320,8	310,2	303,3	kN
(H1b)	In operation	n	min	SH=	239,5	231,7	217,0	kN
(HZ2)	In operation	n	max	SHZ =	321,7	310,9	305,1	kN
(HZ2)	In operation	n	min	SHZ =	238,6	231,0	215,2	kN
(HZ3)	Out of ope	eration	max	SHZ =	264,3	253,4	250,3	kN
(HZ3)	Out of ope	eration	min	SHZ =	236,5	229,4	213,7	kN
(HZS 4)	Transport		min	S HZS =	233,9	227,9	209,4	kN
(HZS 5)	Chute blog	ckage	max	S HZS =	367,2	355,2	348,7	kN
(HZS6)	Extr. mate	rial	max	S HZS =	280,0	269,2	263,5	kN
(HZS10)	Combinati	on UU + S	max	S HZS =	335,4	324,6	318,7	kN
(HZS10)	Combinati	on UU + S	min	S HZS =	238,6	231,0	214,4	kN

setting value

T GILLION G							
Resting	min S HZ2 - 6%	SA =	202,3	202,3	202,3	kN	
	min S HZ2 - 13%	SAA =	187,2	187,2	187,2	kN	
Overload	max S HZ2 + 8%	SZ =	347,4	347,4	347,4	kN	
-	max S HZ2 +13%	SZZ =	363,5	363,5	363,5	kN	

П-36

Standard load cases for bridge loads.

Loads are belonging to ball race bearing bridge node 18 and coordinate system No. 6

V_Br	FZ =	-1000	kN	X6 =	18,000	m
DV_Br	FZ =	-1000	kN	Y6 =	0,000	m
X_Br	FX =	1000	kN	Z6 =	1,975	m
Y_Br	FY =	1000	kN			
MX_Br	MX =	1000	kNm			
MY_Br	MY =	1000	kNm			

Bridge loads for calculation (refe			(refer joint V1	efer joint V1, Loading Unit)			02.10.2008	
		(H)	(HZ i.O)	(HZ 0.0)	(HZS)	(HZG)		
Max/Min	Hr ±	651,8	773,6	928,1	1007,8	1001,9	kN	
Max/Min	Mr ±	959,8	1138,9	1530,0	1825,2	1467,1	kNm	
Max	FZ = V_Br	-1375,7	-1374,3	-1376,9	-1372,1	-1367,2	kN	
Min	Fz	-2424,0	-2438,4	-1988,3	-2639,3	-2478,0	kN	
DV_Br = M	inFZ-MaxFZ =	-1048,3	-1064,1	-611,4	-1267,2	-1110,9	kN	

If +FX = Hr then +MY = Mr Note : If +FY = Hr then -MX = Mr

The factor to convert will be obtained by dividing the bridge loads by 1000!

For all load cases (H; HZ; HZS; HZG) will be calculated with the same extrem values from load case HZ in Operation ! Only load case HZ_J (Jack forces) will be calulated with bridge loads HZ out of Operation !

Resting forces (A); (AA) and overload forces (Z); (ZZ)

will be combined as permanent loads and belonging to the load cases.

Standard load case Z0

Z0 = -1000 On part 1 buckel wheel boom and coordinate system X9 at joint 1.

Ballastreserve for Stability calculations

Ballastreserve will be considered with p =	0,000%	for stabiliy ca	alculations	
	11,312%	for structural	analyses	(SA)
Coordinates of centre of ballast node 14		X 14 =	34,123	m
Coordinates of centre of bucket wheel node 1		X 1 hor =	-40,166	m
		X 1 high =	-39,156	m
		X 1 low =	-38,080	m
		for Stability:	for SA	
BalRes	1= G Bal x p =	0,00	25,00	t
Balance weight in centre of bucket wheel node 1				
V0_bel = BalRes1 x X14 / -(X1hor+X1high+X1low) x 3 =		0,00	21,80	t
V0_bel = BalRes1 x X14 / -X1hor =		0,00	21,24	t
Ballast in basic load cases BalRes1 =	G Bal =	221		t
Factor to be applied on ballast	μ =	0,0000	0,1131	Ι
belonging incrustation of bucket wheel V0 bel =	V0 =	196,6		kN
Factor to be applies on V0	μ=	0,0000	1,0806	

kN

Combination codes : For determining the ballast weight and extrem loadings of important load-carrying elements and for overall stability analysis, the following combination codes have been defined :

No. 1 :	Determination of the ballast
No. 2 :	Extreme forces of joints under service loadings ($\gamma F = 1.0$)
No. 3 :	Stability analysis with partial safety facors applied on live loads 1.0 times dead weight, γF time live loads
No. 4 :	Determination of jack forces for joint V9 and V10 under maintenance conditions For position 1 (horizontal) and 3 (low) only
No. 5 :	Stability analysis jack forces for joint $V9$ and $V10$ under maintenance conditions 1.0 times dead weight, γF time live loads Only for position 1 (horizontal) and 3 (low) !
No. 6 :	for check of winch rope forces for settings (1.0 times setting values)
No. 7 :	for check of centre of gravity at ball race level under service loading
	refer "Operating Manual" of dismantling of bearing C at substructure to fixed crawler.

Ballast mass for My = 0 at ball race in horizontal position

	G	X	GxX
	[t]	[m]	[tm]
Bucket wheel boom + Mast 1	467,5	-27,718	-12958,6
Mast 2	79,4	3,773	299,5
Counterweight boom	248,8	26,296	6541,9
Platform	181,7	0,330	59,9
Sum	977,4	-6,198	-6057,4

Distance ballast to slew centre

X4 = 34,123 m

Ballast mass for balance; xs =0

Ba = -G x X / X4 = 177,5 t

15. Extreme values, stability considerations

15. 1. stay BWB

15. 1. 1. Extreme values of the section forces

Extreme values calculated using combination code No. 2

Section forces belonging to the extreme value for VI : stay BWB Extreme value : value loadcase combination position No. VI : FN [kN]

Extreme values for FN

loadcase ran	ge			Main loads	н	
maximum	Vl	:	3832.5 3832.5	Norm. Operation	Hlb	position 1
minimum	Vl	: —	2698.0	Norm. Operation	Hlb	position 2
loadcase ran	ge			Additional loads	HZ2	
maximum	Vl	:	3835.6 3835.6	Norm.Operation	HZ2	position 1
minimum	Vl	:	2681.5	Norm.Operation	HZ2	position 2
loadcase ran	ge			Additional loads	HZ3	
maximum	Vl	:	3095.3 3095.3	Out of operation	HZ3	position 1
minimum	Vl	:	2647.8	Out of operation	HZ3	position 3
loadcase ran	ge			Special loads	HZS	
maximum	Vl	:	4394.7 4394.7	Chute blockage	HZS5	position 1
minimum	Vl	:	2604.9	Transport 1	HZS4	position 3
loadcase ran	ge			Special loads	HZS	
maximum	Vl	:	4509.6 4509.6	Overload Z_empty	HZS9	position 2
minimum	Vl	:	2061.9	Resting A_front	HZS8	position 3
loadcase ran	ge			Limit loads HZG		
maximum	Vl	÷—	4728.9 4728.9	Overload ZZ_empt	Y	position 2
minimum	Vl	: ——	1863.1 1863.1	Resting AA_front		position 3

П-39

15. 4. winch rope BWB

15. 4. 1. Extreme values of the section forces

Extreme values calculated using combination code No. 2

Section forces belonging to the extreme value for V4 : winch rope BWB Extreme value : value loadcase combination position No. V4 : FN [kN]

Extreme values for FN

loadcase ran	nge			Main loads	H	
maximum		:	320.8	Norm. Operation	Hlb	position 3
	V4	:	320.8			
minimum		:	217.0	Norm. Operation	Hlb	position 2
	V4	:	217.0			
loadcase ran	nge			Additional loads	HZ2	
maximum		:	321.7	Norm.Operation	HZ2	position 3
	V4	:	321.7			
minimum		:	215.2	Norm.Operation	HZ2	position 2
	V4	:	215.2			
loadcase ra:	nge			Additional loads	HZ3	
maximum		:	264.3	Out of operation	HZ3	position 3
	V4	:	264.3			
minimum		:	213.7	Out of operation	HZ3	position 2
	V4	:	213.7			
loadcase ra:	nge			Special loads	HZS	
maximum		:	367.2	Chute blockage	HZS5	position 3
	V4	:	367.2			
minimum		:	209.4	Transport	HZS4	position 2
	V4	:	209.4			
loadcase ran	nge			Special loads	HZS	
maximum		:	365.9	Overload Z_empty	HZS9	position 2
	V4	:	365.9			
minimum		:	186.2	Resting A_front	HZS8	position 2
	V4	:	186.2			
loadcase ra:	nge			Limit loads HZG		
maximum		:	383.6	Overload ZZ_empt	У	position 2
	V4	:	383.6			
minimum		:	169.6	Resting AA_front		position 2
	V4	:	169.6			

Stability 1.1 (09.2006)

A3_EPS 3092 BWE_Final stability.stb, Rev. 0, 02 Oct 2008

- 231 -

15. 6. stay CWB

	FN 0 node 2
node 1	$F_N > 0$: tensile force

15. 6. 1. Extreme values of the section forces

Extreme values calculated using combination code No. 2

Section forces belonging to the extreme value for V6 : stay CWB Extreme value : value loadcase combination position No. V6 : FN [kN]

Extreme values for FN

loadcase ran	ge			Main loads	н	
maximum	V6	:	3627.3 3627.3	Norm. Operation	Hlb	position 3
minimum	V6	:	2485.4	Norm. Operation	Hlb	position 2
loadcase ran	ge			Additional loads	HZ2	
maximum	Ve	:	3641.3 3641.3	Norm.Operation	HZ2	position 1
minimum	V6	:	2456.7	Norm.Operation	HZ2	position 2
loadcase ran	ge			Additional loads	HZ3	
maximum	V6	:	2990.2	Out of operation	HZ3	position 1
minimum	Ve	:	2422.1 2422.1	Out of operation	HZ3	position 2
loadcase ran	ge			Special loads	HZS	
maximum	V6	:	4155.3 4155.3	Chute blockage	HZS5	position 1
minimum	V6	:	2354.0 2354.0	Transport	HZS4	position 2
loadcase ran	ge			Special loads	HZS	
maximum	Ve		4246.8	Overload Z_empty	HZS9	position 2
minimum	V6	:	2122.2	Resting A_front	HZS8	position 2
loadcase ran	ge			Limit loads HZG		
maximum	Ve	:	4450.8 4450.8	Overload ZZ_empt	Y	position 2
minimum	V6	:	1931.2	Resting AA_front		position 2

ПРИЛОГЗ

"Извештај о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал" број 01/10 од 20.01. 2010. године) Страна 13

SLUŽBA ZA LABORATORIJSKA MERENJA I ISPITIVANJA

Adresa: Diše Đurđevića 32 11500 Vreoci Telefon:011/8123-335 Fax: 011/8120-123

I Z V E Š T A J o ispitivanju vaganjem gornje obrtne gradnje rudarskih mašina

Broj: 01/10 od 20. 01.2010. god

Korisnik: ThyssenKrupp Fordertechnik GmbH

Adresa: Essen

Predmet ispitivanja: ROTORNI BAGER SchRs 1600/3x25

Mesto ispitivanja: Montažni plac – Pov. kopa Tamnava Zapad

METODA ISPITIVANJA : DM (Preko elektrootpornih mernih dozni)

METROLOŠKA SLEDLJIVOST: INM Certifikat Nº 11.10-139/2007

UGOVOR/PORUDŽBENICA broj: 30184539/AGH/31165 datum: 04.12.2006.

RADNI NALOG 4100621

Opis usluge:

MERENJA TEŽINE GORNJE OBRTNE GRADNJE I ODREĐIVANJA POLOŽAJA PROJEKCIJE TEŽIŠTA ROTORNOG BAGERA SchRs 1600/3x25

Datum ispitivanja: 19.01.2010.

 Ispitivanje obavili :
 mr. Branko Nikolić, dipl. inž. maš. Rajko Spasojević, dipl.inž.el. Petrović Vladimir, el.teh.

 PRILOZI I NAPOMENE:
 1. Protokol merenja 2. Uverenja o etaloniranju 3. Geodetska skica visine kuglibana

 Vodeći inženjer/Rukovodilac merenja:
 Odobrio Šef Laboratorije:

 (potpis)
 (potpis)

 IZJAVA:
 - Rezultati ispitivanja se odnose samo na mereni objekat. - Ovaj izveštaj se ne sme umnožavati, izuzev u celini, bez saglasnosti Laboratorije.

6.2 UPOREDNI REZULTATI MERENJA

	Fa1 (kN)	Fa2 (kN)	Fb (kN)	Fc (kN)	Σ F (kN)	Xt (m)	Yt (m)
a) Strela radnog točka horizontalna,	3260,4	3221,9	2305,3	2713,7	11501,2	-0,356	-0,125
 b) Strela radnog točka u donjem položaju (α= 12.9°), 	3259,4	3307,8	2312,1	2620,0	11499,3	-0,398	-0,121
 c) Strela radnog točka horizontalna sa tegom. Tegovi 2 x 4x2.41t = 19.3t) 	3783,4	3852,4	1869,6	2180,4	11685,8	-0,859	-0,127
 d) Strela radnog točka u gornjem položaju (α= +14.1°). 	2608,9	2630,5	2967,4	3292,6	11499,4	0,249	-0,118

Grafički prikaz rezultata:

6.3.1 GREŠKA MERENJA TEŽINE

Δ F (kN)=50 – apsolutna greška merenja težine u pojedinoj mernoj tački

V	rednost sil	e u mernoj	tački
Fa1 Fa2 (kN) (kN)		Fb (kN)	Fc (kN)
3260,4	3221,9	2305,3	2713,7

	Najverov	atnija	Γ			
	apsolutna	greška				
	merenja težine					
Σ	$\Delta F(kN)$	50				

Najverova	atnija
relativna g	greška
merenja t	ežine
$\Delta F/F$ (%)	0.43

6.3.2 GREŠKA ODREĐIVANJA KOORDINATE

Greška	Greška merenja							
pojedinačr	pojedinačne veličine							
$\Delta X(m)$	$\Delta F(kN)$							
0,004	50							
ΔY (m)	$\Delta F(kN)$							
0,004	50							

Koordinate mernih tačaka								
XA1(m) XA2(m) Xb(m) Xc(m								
6.0	6.0	44.0	44.0					
YA1(m)	YA2(m)	Yb(m)	Yc(m)					
1.525	1.525	1.525	1.525					

ПРИЛОГ 4 "Weighing" од 29.01. 2010. године Страна 13

Bucket wheel excavator system EPS

1600 SchRs ----- * 25 3

A4 -BWE : Weighing

EPS / Kolubara Lignite Basin / Tamnava West Customer: Order number: N 010 00035 General arrangement drawing: 4322432 TKF machine No. 3092

Prepared: MI EN 12

France Schneider

ThyssenKrupp Fördertechnik GmbH BWE EPS Tamnava - Weighing

2. Weighing of the superstructure

Detailed information on the weighing procedure, the equipment used and the results can be taken from the attachments.

On page 4, a sketch is shown which describes the position of the calibrating weights during test c). 2 x 4 weights of 2.41t each (=19.3t in sum) have been suspended from the locations marked on the sketch by steel wire ropes.

In the following, information from the Final Stability Calculation is used to determine the theoretical weight and C.O.G.s for the weighing conditions (a) - bucket wheel boom horizontal, b) - boom lowered by 12.9° , c) - boom raised by 0.1° with calibrating weights, d) - boom raised by 14.1°). The weights and C.O.G.s of the individual sub-assemblies of the superstructure are given referring to local coordinate systems. In all cases, the x-axes of those coordinate systems are parallel to conveying direction, z is directed upwards.

Reference points for local coordinate systems

		global coordinates		
	Point	x [m]	y [m]	z [m]
pivot bucket wheel boom	5	-3.878	0.000	15.250
pivot mast 1	4	-4.864	0.000	18.983
pivot mast 2	11	3.878	0.000	22.330
support at top/centre of platform	16	0.000	0.000	13.400
main ball race	17	0.000	0.000	11.575
supporting balls	19	0.000	0.000	3.850
ground level	20	0.000	0.000	0.000

Summary of weights/C.O.G.s referring to pivot bucket wheel boom

		coordinates reterring to prior bucket wheel boom								
			hoisting angle in °	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z
Bucket wheel boom (BWB) horizontal			0	406.991	-26.693	-0.350	0.931	-10863.7	-142.5	379.0
Mast 1 (M1)			0	60.527	-4.656	0.000	17.624	-281.8	0.0	1066.7
calibration weight (CA	alibration weight (CAW)		0	19.300	-28.900	0.000	-1.500	-557.8	0.0	-29.0
	horizontal	a)	0.0	467.518	-23.840	-0.305	3.092	-11145.6	-142.5	1445.7
dead loads from bucket wheel boom + mast 1	low	b)	-12.9	467.518	-23.929	-0.305	-2.308	-11187.0	-142.5	-1079.0
	hor. with CAW	c)	0.1	486.818	-24.035	-0.293	2.952	-11700.9	-142.5	1437.2
	high	d)	14.1	467.518	-22.368	-0.305	8.807	-10457.6	-142.5	4117.4

Summary of weights/C.O.G.s referring to top/centre of platform

coordinates referring to top/centre of platform

which buck to be all be any

			hoisting angle							
			in °	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z
	horizontal	a)	0.0	467.518	-27.718	-0.305	4.942	-12958.6	-142.5	2310.7
dead loads from	low	b)	-12.9	467.518	-27.807	-0.305	-0.458	-13000.1	-142.5	-214.1
mast 1	hor. with CAW	c)	0.1	486.818	-27.913	-0.293	4.802	-13588.7	-142.5	2337.8
	high	d)	14.1	467.518	-26.246	-0.305	10.657	-12270.6	-142.5	4982.3
mast 2 (M2)				79.364	3.773	-0.219	20.863	299.5	-17.4	1655.8
counterweight boom (CWB)			248.775	26.296	0.050	10.701	6541.9	12.5	2662.2
counterweight during	weighing (CW)			177.017	34.123	0.000	8.250	6040.4	0.0	1460.4
a real management	horizontal	a)	0.0	972.674	-0.079	-0.152	8.316	-76.9	-147.4	8089.0
dead loads from	low	b)	-12.9	972.674	-0.122	-0.152	5.721	-118.4	-147.4	5564.3
CW	hor. with CAW	c)	0.1	991.974	-0.713	-0.149	8.182	-707.1	-147.4	8116.2
	high	d)	14.1	972.674	0.628	-0.152	11.063	611.1	-147.4	10760.7

29 January 2010

Summary of weights/C.O.G.s referring to centre of main ball race

	2011/10/1012/2012/01/10/10/10			coordinat	es refer	ring to c	entre of	main ba	all race	
			hoisting angle in °	G [t]	x [m]	y [m]	z [m]	G*x	G*y	G*z
an er som er er storer og	horizontal	a)	0.0	972.674	-0.079	-0.152	10.141	-76.9	-147.4	9864.1
dead loads from	low	b)	-12.9	972.674	-0.122	-0.152	7.546	-118.4	-147.4	7339.4
CW	hor. with CAW	c)	0.1	991.974	-0.713	-0.149	10.007	-707.1	-147.4	9926.5
	high	d)	14.1	972.674	0.628	-0.152	12.888	611.1	-147.4	12535.8
Platform (PF)				181.713	0.330	0.000	1.375	59.9	0.0	249.8
in a second second	horizontal	a)	0.0	1154.387	-0.015	-0.128	8.761	-17.0	-147.4	10114.0
dead loads from	low	b)	-12.9	1154.387	-0.051	-0.128	6.574	-58.5	-147.4	7589.2
CW and PF	hor, with CAW	c)	0.1	1173.687	-0.551	-0.126	8.670	-647.1	-147.4	10176.4
	high	d)	14.1	1154.387	0.581	-0.128	11.076	671.0	-147.4	12785.7

Summary of weights (in kN) / C.O.G.s referring to centre of main ball race

			hoisting angle in °	W [kN]	x [m]	y [m]	z [m]	W * x	W*y	W*z
	horizontal	a)	0.0	11324.5	-0.015	-0.128	8.761	-167	-1446	99218
dead loads from	low	b)	-12.9	11324.5	-0.051	-0.128	6.574	-574	-1446	74450
theoretical values	hor. with CAW	c)	0.1	11513.9	-0.551	-0.126	8.670	-6348	-1446	99830
	high	d)	14.1	11324.5	0.581	-0.128	11.076	6582	-1446	125427
dead loads from	horizontal	a)	0.0	11501.1	-0.356	-0.125		-4094	-1438	
superstructure -	low	b)	-12.9	11499.2	-0.398	-0.121		-4577	-1391	
measured values (see	hor. with CAW	c)	0.1	11685.7	-0.859	-0.127		-10038	-1484	
attachment)	high	d)	14.1	11499.4	0.249	-0.118		2863	-1357	
dead loads from	horizontal	a)	0.0	176.6				-3927	8	
superstructure -	low	b)	-12.9	174.7				-4003	54	
measured and	hor. with CAW	c)	0.1	171.8				-3690	-38	
theoretical values	high	d)	14.1	174.9				-3719	89	
average difference				174.5	-21.978	0.1621	Î	-3835	28	ĺ

Summary of the differences	between	measured	and
calculated values:			

ΔW = 174.5 kN ~ 1.5% ΔM = -3835 kNm $\Delta x =$ -0.333 m

For further theoretical evaluations, a ficticious weight acc. to the line "average difference" above has to be added to the theoretical figures:

-										
dead loads from	horizontal	a)	0.0	11499.0	-0.348	-0.123	8.628	-4002	- <mark>14</mark> 18	99218
superstructure -	low	b)	-12.9	11499.0	-0.383	-0.123	6.475	-4408	-1418	74450
corrected theoretical	hor. with CAW	c)	0.1	11688.3	-0.871	-0.121	8.541	-10183	-1418	99830
loads	high	d)	14.1	11499.0	0.239	-0.123	10.908	2748	-1418	125427

After the correction, the maximum difference between the calcula	ated and m	neasu	red (C.O.G. x-p	ositi	on is	15	mm.
The required counterweight acc. to the Final Stability Calculation	is						221.0	t
According to the weighing results, additional counterweight is red	quired for o	compe	ensat	tion of				
the difference moment (see line average	difference	above	e, co	lumn W *	X)		-3835	kNm
corresponding to							112.4	kN
at a distance from slew centre of							34.123	m
Additional counterweight required:	112.4	k	N			*	11.3	t
Overall counterweight required:	221.0	t	+	11.3	t	=	232.3	t
Counterweight to be loaded after weighing	232.3	t		177.0	t	=	55.3	t
Weighing report							29 January 2010	

29 January 2010

A4 - BWE: Weighing

Attachments

Summary of the counterweight loaded at the time of the weighing

Weighing instruction

Report on the weighing of the superstructure by Kolubara Metal, Service for laboratory measurements and research

- 240 -

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

PROTOKOL for Counterweight drw.no. 4 326 457

ALC: PROVIDE 1		merena	merena		vreme	ubačena	ubačena	datum	vreme
rb	dimenzije	količina	težina	datum	merenja	količina	težina	Gatum	ubacivanja
	260v260v260	16 kom	607 kg	11.10.09	1100	16 kom	607	11.10.09	1110
1.	260x260x260	16 kom	596 kg	11.10.09	1115	32 kom	1203	11.10.09	1120
2.	260x260x260	16 kom	601 kg	11.10.09	1130	48 kom	1804	11.10.09	1140
- 3.	260x260x260	16 kom	612 kg	11.10.09	1145	64 kom	2416	11,10.09	1150
5	260x260x260	16 kom	611 kg	11.10.09	1230	80 kom	3027	11.10.09	1240
6	260x260x260	16 kom	601 kg	11.10.09	1245	96 kom	3628	11.10.09	1250
7	260x260x260	16 kom	598 kg	11.10.09	1300	112 kom	4226	11.10.09	1305
0	260x260x260	16 kom	616 kg	11.10.09	1310	128 kom	4842	12.10.09	833
0.	260x260x260	16 kom	612 kg	12,10.09	8 ²⁵	144 kom	5454	12.10.09.	915
9.	260x260x260	16 kom	618 kg	12.10.09	830	160 kom.	6072	12.10.09	9 ³⁵
10.	260x260x260	16 kom	604 kg	12.10.09	9 ²⁵	176 kom	6676	12.10.09	9 ⁴⁰
11.	260x260x260	16 kom	603 kg	12.10.09	935	192 kom	7279	12.10.09	950
12.	260x260x260	16 kom	605 kg	12.10.09	942	208 kom	7884	12.10.09	1000
13.	260x260x260	16 kom	608 kg	12.10.09	1000	224 kom	8492	12.10.09	10 ¹²
14.	260x260x260	16 kom	614 kg	12.10.09	1014	240 kom	9106	12.10.09	10 ²⁰
16	260x260x260	16 kom	604 kg	12,10,09	1025	256 kom	9710	12.10.09	1035
10.	260x260x260	16 kom	605 kg	12 10.09	1037	272 kom	10315	12.10.09	1045
17.	260x260x260	16 kom	500 kg	12 10 09	1055	288 kom	10914	12.10.09	1100
18.	260x260x260	16 kom	508 kg	12.10.09	1100	304 kom	11512	12.10.09	1110
19.	260x260x260	16 kom	605 kg	12 10.09	1115	320 kom	12117	12.10.09	1125
20.	260x200x200	16 kom	611 kg	12.10.09	1130	336 kom	12728	12.10.09	1135
21.	260x260x260	16 kom	610 kg	12.10.09	1140	352 kom	13338	12.10.09	1145
22.	260x260x260	16 kom	602 kg	12 10 09	1212	368 kom	13940	12.10.09	1230
23.	260x260x260	16 kom	588 40	12.10.09	1225	384 kom	14528	12.10.09	1240
24.	200x200x200	16 kom	501 kg	12.10.09	1255	400 kom	15119	12,10,09	1245
25.	260x260x260	16 kom	591 kg	12.10.09	1305	416 kom	15708	12.10.09	1315
20.	260x260x260	16 kom	501 kg	12.10.09	1314	432 kom	16299	12.10.09	1320
27.	260x200x260	16 kom	597 kg	12.10.09	1317	448 kom	16896	12.10.09	1328
20.	260x260x260	16 kom	607 kg	12.10.09	1330	464 kom	17503	12.10.09	1335
29.	260x260x260	16 kom	608 kg	12 10 09	1340	480 kom	18111	12.10.09	1345
30.	260x260x260	16 kom	611 kg	12.10.09	1345	496 kom	18722	12.10.09	1347
22	260x260x260	16 kom	604 kg	12 10 09	1355	512 kom	19326	12.10.09	1400
32.	260x260x260	16 kom	600 kg	12 10 09	1405	528 kom	19935	12,10,09	1408
33.	200x200x200	16 kom	606 kg	12.10.00	1410	544 kom	20541	12.10.09	1415
34.	260x260x260	16 kom	607 kg	12.10.09	14	560 kom	21148	12.10.09	1430
35.	260x260x260	16 Kom	605kg	12.10.09	1520	576 kom	21753	12.10.09	1525
36.	260x260x260	16 Kom	600 kg	12.10.09	15	502 kom	21755	12.10.09	1537
37.	260x260x260	16 kom	604 kg	12.10.09	1540	608 kom	22966	12.10.09	1545
20	260x260x260	16 kom	572 kg	12.10.09	1550	624 kom	23538	12.10.09	1555
39.	260x260x260	16 kom	602 kg	12.10.09	1557	640 kom	24140	12.10.09	1600
40.	260x260x260	16 kom	502 kg	12.10.09	1603	656 kom	24733	12 10 09	1605
41.	200x200x200	16 kom	605 kg	12.10.09	1607	672 kom	25338	12.10.09	1611
42.	260x200x260	16 Kom	605 kg	12.10.09	1610	688 kom	2500	12.10.09	1620
43.	260x260x260	16 Kom	003 Kg	12.10.09	10	704 kom	25345	12.10.09	1623
44.	260x260x260	16 Kom	002 Kg	12.10.09	16	704 KOIII	20345	12.10.09	1625
45.	260x260x260	16 KOM	004 Kg	12.10.09	015	720 Kom	2/149	14.10.09	020
46.	260x130x260	16 kom	300 Kg	14.10.09	0	052 kom	27764	14.10.09	025
4/.	260x130x260	16 kom	302 kg	14.10.09	022	768 kom	2//01	14.10.09	o 930
48.	200X130X200	10 KOM	502 Kg	14.10.09	o and a second	708 K0III	20033	14.10.09	0
49.	260x260x260	16 kom	302 kg	14.10.09	835	784 kom	28355	14.10.09	840
50.	260x260x260	16 kom	598 kg	14.10.09	950	800 kom	28953	14.10.09	1000
51.	260x260x260	16 kom	586 kg	14.10.09	953	816 kom	29539	14.10.09	1005
52.	260x260x260	16 kom	603 kg	14.10.09	1000	832 kom	30142	14.10.09	1008
53.	260x260x260	16 kom	614 kg	14.10.09	1005	848 kom	30756	14.10.09	10'0

Izveštaj uradio:

37

ano: Calenda S Overio:

List I od 7

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

		-			vreme	ubačena	ubačena	datum	vreme
rb	dimenzije	merena	merena	datum	merenia	količina	težina	datum	ubacivanja
10	unicitaje	kolicina	coo ha	14 10 09	1013	864 kom	31365	14.10.09	1017
54.	260x260x260	16 kom	609 Kg	14.10.09	1020	880 kom	31979	14.10.09	10 ²⁵
55.	260x260x260	16 kom	614 Kg	14.10.09	1025	896 kom	32586	14.10.09	1035
56.	260x260x260	16 kom	607 kg	14.10.09	1035	912 kom	33194	14.10.09.	1040
57.	260x260x260	16 kom	608 kg	14.10.09	10	028 kom	33797	14.10.09	1045
58.	260x260x260	16 kom	603 kg	14,10.09	10	928 Kom	34398	14.10.09	1055
59.	260x260x260	16 kom	601 kg	14.10.09	10	944 Kom	35000	14,10.09	1100
60.	260x260x260	16 kom	602 kg	14.10.09	10	900 Kom	35595	14,10,09	1005
61.	260x260x260	16 kom	595 kg	14.10.09	10	970 KOIN	25005	14 10 09	1115
62.	260x130x260	16 kom	310 kg	14.10.09	1100	992 kom	26511	14.10.09	1120
63.	260x260x260	16 kom	606 kg	14.10.09	110	1008 kom	27149	14.10.09	1125
64.	260x260x260	16 kom	607 kg	14.10.09	1121	1024 kom	37110	14.10.09	1140
65.	260x260x260	16 kom	605 kg	14.10.09	1135	1040 kom	31123	14.10.09	1146
66.	260x260x260	16 kom	593 kg	14.10.09	1140	1056 kom	38904	14.10.09	1252
67.	260x260x260	16 kom	588 kg	14.10.09	1145	1072 kom	30534	14.10.09	1258
68.	260x260x260	16 kom	630 kg	14.10.09	1135	1088 Kom	40142	14.10.09	1306
69.	260x260x260	16 kom	608 kg	14.10.09	1257	1104 kom	40142	14.10.09	1314
70.	260x260x260	16 kom	624 kg	14.10.09	1307	1120 kom	40700	14.10.09	1324
71	260x260x260	16 kom	634 kg	14.10.09	1310	1136 kom	41400	14.10.09.	1230
72	260x260x260	16 kom	613 kg	14.10.09	1300	1152 kom	42013	14.10.09.	13
73	260x260x260	16 kom	612 kg	14.10.09	1332	1168 kom	42625	14.10.09.	13
74	260x260x260	16 kom	607 kg	14.10.09	1338	1184 kom	43232	14.10.09.	13
75	260x130x260	16 kom	298 kg	14.10.09	1344	1200 kom	43530	14.10.09.	13
76	260x260x260	16 kom	624 kg	14.10.09	1349	1216 kom	44154	14.10.09.	13
77	260x260x260	16 kom	623 kg	14.10.09	1358	1232 kom	44777	14.10.09.	14
78	260x260x260	16 kom	618 kg	14.10.09	1404	1248 kom	45395	14.10.09	14
70.	260x260x260	16 kom	625 kg	14.10.09	1413	1264 kom	46020	14.10.09	14
80	260x260x260	16 kom	617 kg	14.10.09	1421	1280 kom	46637	14.10.09	1420
81	260x260x260	16 kom	620 kg	14.10.09	1520	1296 kom	47257	14.10.09	15%
82	260x260x260	16 kom	626 kg	14.10.09	1533	1312 kom	47883	14.10.09	1550
82.	260x260x260	16 kom	621 kg	14.10.09	1540	1328 kom	48504	14.10.09	15
84	260x260x260	16 kom	626 kg	14.10.09	1547	1344 kom	49130	14.10.09	1550
85	260x260x260	16 kom	621 kg	14.10.09	1547	1360 kom	49751	14.10.09	15
05.	260x260x260	16 kom	616 kg	14.10.09	1559	1376 kom	50367	14.10.09	16**
00.	260x260x260	16 kom	617 kg	14.10.09	1605	1392 kom	50984	14.10.09	16%
07.	260x200x200	16 kom	619 kg	14,10,09	1612	1408 kom	51603	14.10.09	1617
88.	260x260x260	16 kom	624 kg	14 10.09	1619	1424 kom	52227	14.10.09	1622
89.	260x260x260	16 kom	630 kg	14,10.09	1625	1440 kom	52857	14.10.09	16 ²⁹
90.	260x200x200	16 kom	307 kg	14.10.09	1631	1456 kom	53164	14.10.09	1634
02	260x130x260	16 kom	313 kg	14.10.09	1630	1472 kom	53477	14.10.09	163'
03	260x260x260	16 kom	624 kg	14.10.09	1703	1488 kom	54101	14.10.09	1713
04	260x260x260	16 kom	612 kg	14.10.09	1717	1504 kom	54713	14.10.09	172
05	260x260x260	6 kom	222 kg	14.10.09	1725	1510 kom	54935	14.10.09	1729
95.	20072007200		6001	15 10 00	1006	1526 kom	55544	15.10.09	1010
96.	260x260x260	16 Kom	609 kg	15 10.09	1012	1542 kom	56152	15,10,09	1020
97.	260x260x260	16 Kom	608 Kg	15.10.09	1019	1558 kom	56768	15,10,09	1025
98.	260x260x260	16 kom	616 Kg	15.10.09	1025	1574 kom	57380	15,10,09	1029
99.	260x260x260	16 kom	612 Kg	15.10.09	1030	1574 Kom	57998	15.10.09	1035
100.	260x260x260	16 kom	618 kg	15.10.09	10	1606 kom	58616	15.10.09	1040
101.	260x260x260	16 Kom	618 Kg	15.10.09	1045	1622 kom	59232	15.10.09	1050
102.	260x260x260	16 Kom	010 Kg	15.10.09	1055	1638 kom	59850	15.10.09	1057
103.	260x260x260	16 kom	618 Kg	15.10.09	1100	1654 kom	60467	15,10.09	1105
104.	260x260x260	16 kom	617 kg	15.10.09	1103	1670 kom	61081	15 10 09	1006
105.	260x260x260	16 kom	614 kg	15.10.09	11	16% kom	61603	15 10 09	1115
106.	260x260x260	16 kom	612 kg	15.10.09	1120	1702 kom	62306	15.10.09	1122
107.	260x260x260	16 kom	613 kg	15.10.09	11	1712 Kom	62902	15,10,09	1130
108.	260x260x260	16 kom	590 Kg	15.10.09	1131	1734 kom	63503	15,10.09	1135
109.	260x260x260	16 kom	601 Kg	15.10.09	1136	1750 kom	64103	15.10.09	1141
110.	260x260x260	16 Kom	000 Kg	15.10.09	11	1750 K011	04100		

Izveštaj uradio:

Overio:

1 1 139

List 2 od 7

П-51

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

			to a militari da su sono al	the latter of the state states and the	Vromo	ubačena	ubačena		vreme
rla	dimenzije	merena	merena	datum	marenia	količina	težina	datum	ubacivanja
10	unitenzaje	količina	tezina	15 10 00	11 ⁴⁵	1766 kom	64708	15.10.09	1150
111.	260x260x260	16 kom	605 Kg	15.10.09	1246	2074 kom	65016	15.10.09	1300
112.	260x130x260	16 kom	308 kg	15.10.09	12	2000 kom	65616	15.10.09	1310
113.	260x260x260	16 kom	600 kg	15.10.09	13	2090 Kom	66218	15.10.09	1313
114.	260x260x260	16 kom	602 kg	15.10.09	13	2100 Kom	66828	15,10.09	13 ²⁰
115.	260x260x260	16 kom	610 kg	15.10.09	13	2122 Kom	67445	15.10.09	1325
116.	260x260x260	16 kom	617 kg	15.10.09	13	2156 K0m	68065	15.10.09	1330
117.	260x260x260	16 kom	620 kg	15.10.09	13	2154 Kom	68680	15 10 09	1340
118.	260x260x260	16 kom	615 kg	15.10.09	1355	2170 kom	60201	15.10.09	1345
119.	260x260x260	16 kom	621 kg	15.10.09	13"	2186 kom	69301	15.10.09	1355
120.	260x260x260	16 kom	607 kg	15.10.09	13**	2202 kom	09900	15.10.09	1400
121.	260x260x260	16 kom	607 kg	15.10.09	1333	2218 kom	70515	15.10.09	1407
122.	260x260x260	16 kom	613 kg	15.10.09	1402	2234 kom	71725	15.10.09	1415
123.	260x260x260	16 kom	607 kg	15.10.09	1410	2250 kom	71735	15.10.09	1420
124.	260x260x260	16 kom	618 kg	15.10.09	14'5	2266 kom	720070	16 10 00	1420
125.	260x260x260	16 kom	619 kg	15.10.09	1413	2282 kom	72972	16.10.09	1020
126	260x260x260	16 kom	617 kg	16.10.09	1012	2298 kom	73589	16.10.09	10
127	260x260x260	16 kom	617 kg	16.10.09	1020	2314 kom	74206	16.10.09	10
127.	260x260x260	16 kom	609 kg	16.10.09	1025	2330 kom	74815	16.10.09	10
120.	260x260x260	16 kom	609 kg	16.10.09	1040	2346 kom	75424	16.10.09	10
130	260x260x260	16 kom	609 kg	16.10.09	1045	2362 kom	76033	16.10.09	10
130.	260x260x260	16 kom	610 kg	16.10.09	1042	2378 kom	76643	16.10.09	10
131.	260x260x260	16 kom	593 kg	16.10.09	1050	2394 kom	77236	16.10.09	105
122	260x130x260	16 kom	303 kg	16.10.09	1102	2410 kom	77539	16.10.09	
133.	260x260x260	16 kom	598 kg	16.10.09	1110	2426 kom	78137	16.10.09	11.5
134.	260x260x260	16 kom	606 kg	16.10.09	1120	2442 kom	78743	16.10.09	1125
135.	260x260x260	16 kom	613 kg	16.10.09	1129	2458 kom	79356	16.10.09	1133
130.	260x260x260	16 kom	621 kg	16.10.09	1136	2474 kom	79977	16.10.09	1144
137.	260x260x260	16 kom	618 kg	16.10.09	1145	2490 kom	80595	16.10.09	1150
138.	260x260x260	16 kom	615 kg	16.10.09	1152	2506 kom	81210	16.10.09	1157
139.	260x260x260	16 kom	605 kg	16,10,09	1155	2522 kom	81815	16.10.09	1159
140.	260×130×260	16 kom	303 kg	16.10.09	-1250	2538 kom	82118	16.10.09	1255
141.	20021302200	16 kom	303 kg	16 10 09	1257	2554 kom	82421	16.10.09	1303
142.	260x260x260	16 kom	617 kg	16 10.09	1305	2570 kom	83038	16.10.09	1308
143.	260x260x260	16 Kom	610 kg	16 10 09	1310	2586 kom	83657	16.10.09	1315
144.	260x260x260	16 KOM	019 Kg	10.10.09		2000 1011	04074	16 10 00	1319
145.	260x260x260	16 kom	617 kg	16.10.09	1314	2602 kom	84274	16.10.09	1330
146.	260x260x260	16 kom	619 kg	16.10.09	1305	2618 kom	04093	16 10.09	1338
147.	260x260x260	16 kom	619 kg	16.10.09	13	2634 KOM	86117	16 10 09	1355
148.	260x260x260	16 kom	605 kg	16.10.09	1.3	2650 Kom	86726	16 10 09	1305
149.	260x260x260	16 kom	609 kg	16.10.09	15	2000 KOIII	97340	16 10 00	1400
150.	260x260x260	16 kom	614 kg	16.10.09	13	2682 Kom	07040	16.10.09	1412
151.	260x260x260	16 kom	625 kg	16.10.09	14	2698 kom	87965	16:10:09	14
152.	260x130x260	16 kom	301 kg	16.10.09	1420	2714 kom	88266	10.10.09	14
153.	260x260x260	16 kom	626 kg	16.10.09	1427	2730 kom	88892	16.10.09	14
154.	260x260x260	16 kom	614 kg	16.10.09	1435	2746 kom	89506	16.10.09	14
155.	260x260x260	9 kom	343 kg	2.12.09.	730	2755 kom	89849	2.12.09.	913
156.	260x260x260	9 kom	344 kg	2.12.09.	745	2764 kom	90193	2.12.09.	970
157.	260x260x260	9 kom	344 kg	2.12.09.	946	2773 kom	90537	2.12.09.	1000
158.	260x260x260	9 kom	346 kg	2.12.09.	947	2782 kom	90883	2.12.09.	1000
159.	260x260x260	9 kom	331 kg	2.12.09.	1000	2791 kom	91214	2.12.09.	10"
160	260x260x260	9 kom	342 kg	2.12.09.	1005	2800 kom	91556	2.12.09.	1020
161	260x260x260	9 kom	334 kg	2.12.09.	1018	2809 kom	91890	2.12.09.	1032
162	260x260x260	9 kom	331 kg	2.12.09.	1023	2818 kom	92221	2.12.09.	1040
163	260x260x260	9 kom	331 kg	2.12.09.	1037	2827 kom	92552	2.12.09.	1049
164	260x260x260	9 kom	331 kg	2.12.09.	1045	2836 kom	92883	2.12.09.	1055
165	260x260x260	9 kom	336 kg	2.12.09.	1052	2845 kom	93219	2.12.09.	1106
166	260x260x260	9 kom	332 kg	2.12.09.	1108	2854 kom	93551	2.12.09.	1122
167	260x260x260	9 kom	334 kg	2.12.09.	1115	2863 kom	93885	2.12.09.	1127
10/1	2001120011200								

Izveštaj uradio:

Overio:

List 3 od 7

П-52

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

					vreme	ubačena	ubačena	datum	vreme
rb	dimenzije	merena	merena	datum	merenia	količina	težina	datum	ubacivanja
		Kolicina	224 kg	2 12 00	1125	2872 kom	94219	2.12.09.	1155
168.	260x260x260	9 Kom	334 Kg	2.12.09.	1127	2881 kom	94564	2.12.09.	12 ⁰⁵
169.	260x260x260	9 kom	345 Kg	2.12.09.	1142	2890 kom	94911	2.12.09.	1247
170.	260x260x260	9 kom	347 Kg	2.12.09.	1144	2899 kom	95254	2.12.09.	1259
171.	260x260x260	9 kom	343 Kg	2.12.09.	1150	2908 kom	95595	2.12.09.	1307
172.	260x260x260	9 kom	341 kg	2.12.09.	1051	2908 Kom	95936	2.12.09.	1318
173.	260x260x260	9 kom	341 kg	2.12.09.	12	2917 Kom	96277	2.12.09	1327
174.	260x260x260	9 kom	341 kg	2.12.09.	12	2926 Kolli	06611	2 12 09	1334
175.	260x260x260	9 kom	334 kg	2.12.09.	13	2935 Kom	96049	2.12.09.	1340
176.	260x260x260	9 kom	338 kg	2.12.09.	13.	2944 Kom	90949	2.12.09.	1345
177.	260x260x260	9 kom	271 kg	2.12.09.	13.0	2953 Kom	07563	2.12.09.	1350
178.	260x260x260	9 kom	343 kg	2.12.09.	13-2	2962 Kom	97505	2.12.09.	1400
179.	260x260x260	9 kom	340 kg	2.12.09.	1320	2971 Kom	97903	2.12.09.	1406
180.	260x260x260	9 kom	337 kg	2.12.09.	133	2980 kom	98240	2.12.09.	1415
181.	260x260x260	9 kom	343 kg	2.12.09.	1344	2989 kom	98583	2.12.09.	14
182	260x260x260	9 kom	340 kg	2.12.09.	1450	2998 kom	98923	2.12.09.	14
192	260x260x260	9 kom	335 kg	2.12.09.	1453	3007 kom	99258	2.12.09.	14
184	260x260x260	9 kom	344 kg	2.12.09.	1520	3016 kom	99602	2.12.09.	1533
194.	260x260x260	9 kom	343 kg	2.12.09.	1523	3025 kom	99945	2.12.09.	15
105.	260x260x260	9 kom	343 kg	2.12.09.	1530	3034 kom	100288	2.12.09.	15"
187	260x260x260	9 kom	346 kg	2.12.09.	1540	3043 kom	100634	2.12.09.	1500
107.	260x260x260	9 kom	346 kg	2.12.09.	1554	3052 kom	100980	2.12.09.	1600
100.	260x260x260	9 kom	345 kg	3.12.09.	730	3061 kom	101325	3.12.09.	7"
189.	200x200x200	9 kom	347 40	3 12 09	745	3070 kom	101672	3.12.09.	733
190.	260x260x260	9 KOIII	247 kg	3 12 09	755	3079 kom	102019	3.12.09.	810
191.	260x260x260	9 KOIII	200 kg	3.12.09.	810	3095 kom	102328	3.12.09.	827
192.	260x130x260	16 Kom	309 kg	3.12.09	g10	3104 kom	102679	3.12.09.	855
193.	260x260x260	9 Kom	351 kg	3.12.09.	040	3113 kom	103031	3.12.09.	1000
194.	260x260x260	9 kom	352 Kg	3.12.09.	045	3122 kom	103385	3.12.09.	1005
195.	260x260x260	9 kom	354 Kg	3.12.09.	049	3131 kom	103732	3.12.09.	1019
196.	260x260x260	9 Kom	347 Kg	3.12.09.	056	3140 kom	104082	3.12.09.	1022
197.	260x260x260	9 kom	350 kg	3.12.09.	1005	3140 kom	104415	3 12 09	1025
198.	260x260x260	9 kom	333 kg	3.12.09.	10	2159 kom	104752	3 12 00	1030
199.	260x260x260	9 kom	337 kg	3.12.09.	10	3158 Kom	104732	2 12 00	1040
200.	260x260x260	9 kom	338 kg	3.12.09.	10.3	3167 kom	105090	3.12.09.	1045
201.	260x260x260	9 kom	347 kg	3.12.09.	1050	3176 kom	105437	3.12.09.	10
202.	260x260x260	9 kom	308 kg	3.12.09.	1044	3185 kom	105745	3.12.09.	110
203.	260x260x260	9 kom	346 kg	3.12.09.	10**	3194 kom	106091	3.12.09.	11
204.	260x260x260	9 kom	347 kg	3.12.09.	1055	3203 kom	106438	3.12.09.	11
205.	260x260x260	9 kom	343 kg	3.12.09.	1100	3212 kom	106781	3.12.09.	1123
206.	260x260x260	9 kom	350 kg	3.12.09.	1110	3221 kom	107131	3.12.09.	1120
207	260x260x260	10 kom	387 kg	3.12.09.	1119	3231 kom	107518	3.12.09.	1150
208	260x260x260	9 kom	350 kg	3.12.09.	1125	3240 kom	107868	3.12.09.	1135
200.	260x260x260	10 kom	390 kg	3.12.09.	1127	3250 kom	108258	3.12.09.	1140
209.	260x260x260	10 kom	390 kg	3,12.09.	1133	3260 kom	108648	3.12.09.	1145
210.	260x260x260	10 kom	391 kg	3,12.09.	1145	3270 kom	109039	3.12.09.	1148
212	260x260x260	10 kom	377 kg	3.12.09.	1150	3280 kom	109416	3.12.09.	1155
212.	260x260x260	10 kom	377 kg	3.12.09.	1155	3290 kom	109793	3.12.09.	1157
213.	260x260x260	10 kom	377 kg	3.12.09.	1159	3300 kom	110170	3.12.09.	12 ²⁵
215	260x260x260	10 kom	373 kg	3,12,09	1220	3310 kom	110543	3.12.09.	1230
213.	260+260+260	10 kom	360 kg	3 12 09	1225	3320 kom	110912	3.12.09.	1235
210.	200x200x200	10 Kolin	A10 kg	3 12.09	1233	3331 kom	111331	3.12.09	1240
217.	200x200x200	11 Kom	419 Kg	2 12 00	1240	3342 kom	111740	312.09	1245
218.	260x260x260	11 kom	418 Kg	3.12.09.	12	2254 kom	111/49	3 12.09	1255
219.	260x260x260	12 kom	467 kg	3.12.09.	12	3354 Kom	112210	3.12.09.	1200
220.	260x260x260	12 kom	464 kg	3.12.09.	13	3300 Kom	112080	3.12.09.	13
221.	260x260x260	13 kom	500 kg	3.12.09.	13	3379 KOM	115180	3 12.09	1322
222.	260x260x260	12 kom	455 kg	3.12.09.	13	3391 Kom	113033	3.12.09.	1240
223.	260x260x260	12 kom	453 kg	3.12.09.	13	3403 Kom	114088	3.12.09.	1238
224	260x260x260	1 12 kom	453 kg	3.12.09.	1355	3415 kom	114541	3.12.09.	1.15

Izveštaj uradio:

Overio:

1ª

Hope.

List 4 od 7

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

Standbergel 1		marana	mercha		vreme	ubačena	ubačena	datum	vreme
rb	dimenzije	količina	težina	datum	merenja	količina	težina	Gatum	ubacivanja
		12 kom	461 kg	3 12 09	1344	3427 kom	115002	3.12.09.	13"5
225.	260x260x260	12 KOM	401 Kg	3 12 09	1405	3439 kom	115456	3.12.09.	1408
226.	260x260x260	12 KOM	434 Kg	3.12.09.	1410	3451 kom	115905	3.12.09.	14 ¹⁵
227.	260x260x260	12 kom	449 Kg	3.12.09.	1514	3463 kom	116352	3.12.09.	1520
228.	260x260x260	12 kom	447 Kg	2.12.00	1523	3475 kom	116807	3.12.09.	1530
229.	260x260x260	12 kom	455 Kg	3.12.09.	1532	3489 kom	117263	3.12.09.	1544
230.	260x260x260	12 kom	456 kg	3.12.09.	15	2501 kom	117719	3.12.09.	1548
231.	260x260x260	12 kom	456 kg	3.12.09.	15	2512 kom	118170	3.12.09	1555
232.	260x260x260	12 kom	460 kg	3.12.09.	15	2525 kom	118633	3 12 09	1604
233.	260x260x260	12 kom	454 kg	3.12.09.	15	3525 Kom	118030	3 12 09	1608
234.	260x260x260	8 kom	306 kg	3.12.09.	16	3533 KOM	110736	3 12 09	16 ¹²
235.	260x260x260	8 kom	297 kg	3.12.09.	16	3541 Kom	119250	10.12.00	0803
236.	260x260x260	12 kom	461 kg	10.12.09	0739	3553 kom	119697	10.12.09	08
237	260x260x260	12 kom	453 kg	10.12.09	0805	3565 kom	120150	10.12.09	00
238	260x260x260	12 kom	451 kg	10.12.09	0811	3577 kom	120601	10.12.09	09
230.	260x260x260	12 kom	449 kg	10.12.09	0818	3589 kom	121050	10.12.09	09.0
239.	260x260x260	12 kom	454 kg	10,12.09	0910	3601 kom	121504	10.12.09	09*5
240.	260x260x260	12 kom	457 kg	10,12,09	0920	3613 kom	121961	10.12.09	0955
241.	260x260x260	12 kom	456 kg	10,12,09	0950	3625 kom	122417	10.12.09	1015
242.	260x260x260	12 kom	455 kg	10.12.09	0945	3637 kom	122872	10.12.09	1030
243.	260x260x260	12 kom	455 kg	10.12.09	1006	3649 kom	123327	10.12.09	1119
244.	260x200x200	12 kom	461 kg	10.12.09	1021	3661 kom	123788	10.12.09	1120
245.	260x260x260	12 Kom	401 kg	10 12 09	1020	3673 kom	124244	10.12.09	1125
246.	260x260x260	12 KOIII	210kg	10.12.09	1130	3689 kom	124554	10.12.09	1035
247.	260x130x260	16 Kom	310kg	10.12.09	1131	2701 kom	125012	10,12,09	1100
248.	260x260x260	12 kom	458kg	10.12.09	1135	3701 Kom	125476	10.12.09	1215
249.	260x260x260	12 kom	464kg	10.12.09	1137	2725 kom	125942	10 12 09	1220
250.	260x260x260	12 kom	466kg	10.12.09	11	3725 Kom	125342	10.12.09	1230
251.	260x260x260	12 kom	452kg	10.12.09	12	3737 Kom	126354	10.12.09	1236
252.	260x260x260	12 kom	464kg	10.12.09	12	3749 Kom	120030	10.12.09	1241
253.	260x260x260	12 kom	466kg	10.12.09	12	3701 KOM	127324	10.12.09	1245
254.	260x260x260	12 kom	464kg	10.12.09	12	3775 kom	129751	10.12.09	1248
255.	260x260x260	12 kom	463kg	10.12.09	12	3785 KOM	120251	10.12.09	1254
256.	260x260x260	12 kom	466kg	10.12.09	12**	3797 Kom	120/1/	10.12.09	12
257.	260x260x260	12 kom	463kg	10.12.09	1252	3809 kom	129180	10.12.09	1205
258.	260x260x260	12 kom	456kg	10.12.09	12"	3821 kom	129636	10.12.09	1208
259.	260x260x260	12 kom	460kg	10.12.09	1305	3833 kom	130096	10.12.09	13
260.	260x260x260	12 kom	461kg	10.12.09	1300	3845 kom	130557	10,12.09	13
261.	260x130x260	16 kom	310kg	10.12.09	1310	3861 kom	130867	10.12.09	13
262.	260x260x260	12 kom	464kg	10.12.09	1316	3873 kom	131331	10.12.09	13
263	260x260x260	12 kom	455kg	10.12.09	1321	3885 kom	131786	10.12.09	13
264	260x260x260	12 kom	458kg	10.12.09	1327	3897 kom	132244	10.12.09	13-2
265	260x260x260	12 kom	447kg	10.12.09	1335	3909 kom	132691	10.12.09	1340
265	260x260x260	12 kom	463kg	10.12.09	1340	3921 kom	133154	10.12.09	1345
200.	260x260x260	12 kom	470kg	10.12.09	1344	3933 kom	133624	10.12.09	1350
267.	260x260x260	12 kom	456kg	10.12.09	1355	3945 kom	134080	10.12.09	1355
260	260x260x260	12 kom	465kg	10.12.09	1357	3957 kom	134545	10.12.09	1405
270	260x260x260	12 kom	454kg	10.12.09	1402	3969 kom	134999	10.12.09	1408
271	260x260x260	12 kom	456kg	10.12.09	1408	3981 kom	135455	10.12.09	1410
271.	260+260+260	12 kom	450kg	10,12,09	1410	3993 kom	135905	10.12.09	1413
212.	20082008200	12 Kom	45860	10 12 09	1514	4005 kom	136363	10.12.09	15 ²⁰
273.	260x260x260	12 KOM	450kg	10.12.09	1523	4017 kom	136818	10.12.09	1530
274.	260x260x260	12 Kom	455Kg	10.12.09	1532	4020 kom	137270	10.12.09	1544
275.	260x260x260	12 kom	452kg	10.12.09	15	4029 KUII	137270	10.12.09	1548
276.	260x260x260	12 kom	457kg	10.12.09	15	4041 Kom	137727	10.12.09	1555
277.	260x260x260	12 kom	461kg	10.12.09	15	4055 Kom	130100	10.12.09	1604
278.	260x130x260	16 kom	303kg	10.12.09	1607	4009 K0m	138050	10.12.09	1608
279.	260x260x260	12 kom	459Kg	10.12.09	1610	4001 Kom	130256	10.12.09	1612
280.	260x130x260	16 kom	- 306Kg	10.12.09	10	4097 Kom	139230	10.12.09	1619
281.	260x130x260	16 kom	304kg	10.12.09	10	4113 Kom	139300	10.12.09	10.10

Izveštaj uradio:

Overio:

List 5 od 7

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

	Surger and the second se			States in the second state of the second	Uromo	ubačena	ubačena		vreme
rb	dimenzije	Isoližino	tožino	datum	marania	količina	težina	datum	ubacivania
202	260-260-260	Roncina 9 kom	204kg	10.12.00	1619	4121 kom	139864	11 12 09	16 ²³
282.	260x260x260	8 KOM	304Kg	10.12.09	1623	4121 Kom	140318	11.12.09	1629
283.	260x260x260	12 Kom	454Kg	10.12.09	10	4133 Kom	140310	11.12.09	1634
284.	260x260x260	4 kom	ISIKg	10.12.09	1 10	4137 Kom	140409	11.12.09	10
285.	260x260x260	12 kom	460kg	11.12.09	0743	4149 kom	140929	11.12.09	0755
286.	260x260x260	12 kom	461kg	11.12.09	0755	4161 kom	141390	11.12.09	0758
287.	260x260x260	12 kom	457kg	11.12.09	0758	4173 kom	141847	11.12.09	0805
288.	260x260x260	12 kom	464kg	11.12.09	0802	4185 kom	142311	11.12.09	0811
289.	260x260x260	12 kom	461kg	11.12.09	0805	4197 kom	142772	11.12.09	0810
290.	260x260x260	12 kom	464kg	11.12.09	0808	4209 kom	143236	11.12.09	0814
291	260x260x260	12 kom	465kg	11.12.09	0810	4221 kom	143701	11.12.09	0815
292.	260x260x260	12 kom	449kg	11.12.09	0815	4233 kom	144150	11.12.09	0821
293	260x260x260	12 kom	446kg	11.12.09	0821	4245 kom	144596	11.12.09	0910
204	260x260x260	12 kom	465kg	11 12 09	0910	4257 kom	145061	11.12.09	0915
205	260+260+260	12 kom	445kg	11 12 00	0015	4269 kom	145506	11 12 09	0920
295.	260x260x260	12 kom	445Ng	11.12.09	0020	4281 kom	145958	11 12 09	0925
290.	260x260x260	12 Kom	450kg	11.12.09	09	4201 Kom	146408	11 12 09	0930
297.	260x260x260	12 Kom	450kg	11.12.09	0930	4305 kom	146860	11 12.09	0935
298.	260x260x260	12 Kom	AAAka	11.12.09	0935	4317 kom	147304	11.12.09	0940
299.	260x260x260	12 kom	444Kg	11.12.09	1020	4329 kom	147756	11 12 09	1125
201	260x260x260	12 kom	432kg	11.12.09	1130	4341 kom	148204	11.12.09	1035
301.	260x260x260	12 Kom	440Kg	11 12.09	1131	4341 kom	148650	11.12.09	1100
302.	260x260x260	12 Kom	440Kg	11.12.09	1135	4355 Kom	140005	11.12.09	1215
303.	260x260x260	12 KOM	445Kg	11.12.09	11	4303 KOIII	149093	11.12.09	12
304.	260x260x260	12 kom	448kg	11.12.09	11	4377 Kom	149543	11.12.09	12
305.	260x260x260	12 kom	451kg	11.12.09	12	4389 Kom	149994	11.12.09	12
306.	260x260x260	12 kom	451kg	11.12.09	1210	4401 kom	150445	11.12.09	12
307.	260x260x260	12 kom	451kg	11.12.09	1250	4413 kom	150896	11.12.09	12"
308.	260x260x260	12 kom	464kg	11.12.09	1250	4425 kom	151360	11.12.09	12
309.	260x260x260	12 kom	468kg	11.12.09	12	4437 kom	151828	11.12.09	12
310.	260x260x260	12 kom	448kg	11.12.09	12"	4449 kom	152276	11.12.09	12
311.	260x260x260	12 kom	448kg	11.12.09	1252	4461 kom	152724	11.12.09	1300
312.	260x260x260	12 kom	454kg	11.12.09	12"	4473 kom	153178	11.12.09	1303
313.	260x260x260	12 kom	456kg	11.12.09	1305	4485 kom	153634	11.12.09	1308
314.	260x260x260	12 kom	453kg	11.12.09	13%	4497 kom	154087	11.12.09	13''
315.	260x260x260	12 kom	455kg	11.12.09	1310	4509 kom	154542	11.12.09	1320
316.	260x260x260	12 kom	464kg	11.12.09	1310	4521 kom	155006	11.12.09	1320
317.	260x130x260	16 kom	305kg	11.12.09	1321	4537 kom	155311	11.12.09	1342
318.	260x260x260	12 kom	463kg	11.12.09	1327	4549 kom	155774	11.12.09	1329
319.	260x260x260	12 kom	454kg	11.12.09	1335	4561 kom	156228	11.12.09	1340
320.	260x260x260	12 kom	456kg	11.12.09	1310	4573 kom	156684	11.12.09	1345
321.	260x260x260	12 kom	458kg	11.12.09	1344	4585 kom	157142	11.12.09	1350
322.	260x260x260	12 kom	465kg	11.12.09	1355	4597 kom	157607	11.12.09	1355
323.	260x260x260	12 kom	463kg	11.12.09	1357	4609 kom	158070	11.12.09	1405
324.	260x260x260	12 kom	463kg	11.12.09	1402	4621 kom	158533	11.12.09	1408
325.	260x260x260	12 kom	466kg	11.12.09	1408	4633 kom	158999	11.12.09	1410
326.	260x260x260	12 kom	447kg	11.12.09	1410	4645 kom	159446	11.12.09	1415
327.	260x260x260	12 kom	446kg	11.12.09	1514	4657 kom	159892	11.12.09	15 ²⁰
328.	260x260x260	12 kom	448kg	11.12.09	1523	4669 kom	160340	11.12.09	1530
329.	260x260x260	12 kom	462kg	11.12.09	1532	4681 kom	160802	11.12.09	1544
330.	260x260x260	12 kom	454kg	11.12.09	1536	4693 kom	161256	11.12.09	1548
331.	260x260x260	12 kom	459kg	11.12.09	1545	4705 kom	161715	11.12.09	1555
332.	260x130x260	16 kom	306kg	11.12.09	1555	4721 kom	162021	11.12.09	1604
333.	260x260x260	12 kom	461kg	11.12.09	1607	4733 kom	162482	11.12.09	1608
334.	260x260x260	12 kom	470kg	11.12.09	1610	4745 kom	162952	11.12.09	1612
335.	260x260x260	12 kom	461kg	11.12.09	1614	4757 kom	163413	11.12.09	1619
336.	260x260x260	12 kom	464kg	11.12.09	16 ²⁰	4769 kom	163877	11.12.09	16 ²⁵
337.	260x260x260	12 kom	457kg	11.12.09	16 ²⁵	4781 kom	164334	11.12.09	1630
338.	260x260x260	12 kom	457kg	11,12,09	1630	4793 kom	164791	11,12,09	1635

Izveštaj uradio:

Overio:

List 6 od 7

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

rb	dimenzije	merena	merena težina	datum	vreme	ubačena količina	ubačena težina	datum	vreme ubacivanja
220	260v260v260	12 kom	457kg	11.12.09	1635	4805 kom	165248	11.12.09	1640
240	260x260x260	12 kom	460kg	11.12.09	1640	4817 kom	165708	11.12.09	1645
241	260x130x260	16 kom	312kg	11.12.09	1645	4833 kom	166020	11.12.09	1650
241.	260x130x260	16 kom	317kg	11.12.09	1650	4849 kom	166337	11.12.09	1655
242.	260x150x260	12 kom	458kg	11.12.09	1655	4861 kom	166795	11.12.09	1700
343.	260x200x200	12 kom	465kg	11,12,09	1700	4873 kom	167260	11.12.09	1707
344.	260x260x260	12 kom	463kg	11 12.09	1707	4885 kom	167724	11.12.09	1710
345.	260x260x260	12 Kom	460kg	11 12 09	1710	4897 kom	168184	11.12.09	1714
346.	260x260x260	12 kom	450kg	11.12.09	1714	4909 kom	168643	11.12.09	1720
347.	260x260x260	12 kom	458kg	11.12.09	1720	4921 kom	169101	11.12.09	1725
348.	260x260x260	12 kom	457kg	11.12.09	1725	4933 kom	169558	11.12.09	17 ³⁰
349.	260x260x260	12 kom	453kg	11,12,09	1730	4945 kom	170011	11.12.09	1735
251	260x260x260	12 kom	451kg	11.12.09	1735	4957 kom	170462	11.12.09	1740
252	260x260x260	9 kom	336kg	11.12.09	1740	4966 kom	170798	11.12.09	1745
252	260x260x260	7 kom	267kg	11.12.09	1745	4973 kom	171065	11.12.09	1750
355.	20072007200	101	4(4	12 12 00	0745	4985 kom	171529	12,12,09	0755
354.	260x260x260	12 kom	464	12.12.09	07	4997 kom	171995	12.12.09	0758
355.	260x260x260	12 KOM	400	12.12.09	0758	5005 kom	172463	12.12.09	0802
356.	260x260x260	12 KOM	219	12.12.09	0802	5021 kom	172781	12.12.09	0805
357.	260x130x260	10 KOIII	471	12.12.09	0805	5033 kom	173252	12.12.09	0808
358.	260x260x260	12 KOM	4/1	12.12.09	0008	5045 kom	173714	12.12.09	0810
359.	260x260x260	12 Kom	402	12.12.09	0810	5057 kom	174165	12 12 09	0815
360.	260x260x260	12 kom	451	12.12.09	08	5060 kom	174103	12.12.09	0821
361.	260x260x260	12 kom	467	12.12.09	08	5081 kom	174032	12.12.09	0910
362.	260x260x260	12 kom	462	12.12.09	08	5001 Kom	175543	12.12.09	0915
363.	260x260x260	12 kom	449	12.12.09	09	5105 kom	175099	12.12.09	0920
364.	260x260x260	12 kom	450	12.12.09	0920	5117 kom	176447	12.12.09	0925
365.	260x260x260	12 Kom	448	12.12.09	0025	5129 kom	176904	12.12.09	0930
366.	260x260x260	12 Kom	457	12.12.09	0030	5132 kom	177017	12.12.09	0935
367	260x260x260	3 kom	113	12.12.09	09	JIJZ KOIII	177017	12.12.03	L

Izveštaj uradio:

Overio: Sopolo-5

List 7 od 7

Test 1 : BWB horizontal

position of center of bucket wheel : 16.000 m above ground

- D21 Jack up to reference position (using jacks p1 to p4).
- D22 Jack up the superstructure by **3 mm** using the jacks on the main jacking points (P1 to P4). Take readings at **load cells** of P1 to P4 and report them.
- D23 Take readings at minimess connectors for rope load monitoring cylinders

Results from Test 1:

- D24 Repeat step D22
- D25 Repeat step D22
- D26 Repeat step D22
- D27 Lower the superstructure by **3 mm** using the jacks on the main jacking points (P1 to P4). Take readings at **load cells** of P1 to P4 and report them.
- D28 Repeat step D27
- D29 Repeat step D27

D30 The superstructure is to be lowered to the reference position and supported on jacks at p1 to p4.

step **P1** P2 P3 P4 kN kN kN kN 3078 2698 2888 2888 11552 rated: (kN) D22 lifting D24 lifting D25 lifting D26 lifting D27 lowering D28 lowering D29 lowering

average (t):

G=	t
G=	kN
x =	m towards BWB
y =	m towards cabin side
	G= G= x = y =

The superstruct

Results from Test 1:

Test 2 : BWB ground (8.8m below horizontal: a -12.9°)

Bucket wheel boom lowered to about $\alpha = -12.9^{\circ}$. position of center of bucket wheel :

7.200 m above ground

The bucket wheel position is to be recorded.

Proceed with steps D21 to D210

Results from Test 2:

winch load :		bar		bar	
reading	after lifting		rated:	106.5	240.8
	after lowering				

step		P1	P2	P3	P4	
		kN	kN	kN	kN	
	rated: (kN)	3042	2662	2924	2924	11552
D22	lifting					Ī
D24	lifting					Ī
D25	lifting					Ī
D26	lifting					Ī
D27	lowering					I
D28	lowering					I
D29	lowering					Ι

average (t):

Weight	G=	t
	G=	kN
center of gravity:	x =	m towards BWB
see sketch	y =	m towards cabin side

BWB high (6m above horizontal: a +10.7°) Test 5 :

Raise bucket wheel boom to high position. position of center of bucket wheel :

22.000 m above ground

The bucket wheel position is to be recorded.

Proceed with steps D21 to D30

Results from Test 4:

winch load :		bar		bar	
reading	after lifting		rated:	99.6	225.2
	after lowering				

	P1	P2	P3	P4	
	kN	kN	kN	kN	
rated: (kN)	3492	3112	2474	2474	1155
lifting					
lifting					
lifting				2	
lifting					
lifting					
lowering					
lowering					
	rated: (kN) lifting lifting lifting lifting lifting lowering lowering	P1 kN rated: (kN) 3492 lifting lifting lifting lifting lifting lowering lowering	P1 P2 kN kN rated: (kN) 3492 3112 lifting	P1 P2 P3 kN kN kN rated: (kN) 3492 3112 2474 lifting	P1 P2 P3 P4 kN kN kN kN rated: (kN) 3492 3112 2474 2474 lifting

average (t):

refer annex:

Weight	G=	t
	G=	kN
center of gravity:	x =	m towards BWB
see sketch	y =	m towards cabin side

2
"Извештај о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал"број 02/10 од 01.02. 2010. године) Стране 2 и 10

АТС 01-269 АКРЕДИТОВАНА ЛАБОРАТОРИЈА ЗА ИСПИТИВАЊЕ RPS ISO/IEC 17025:2006

SLUŽBA ZA LABORATORIJSKA MERENJA I ISPITIVANJA

Adresa: Diše Đurđevića 32 11500 Vreoci Telefon:011/8123-335 Fax: 011/8120-123

I Z V E Š T A J O ISPITIVANJU VAGANJEM GORNJE OBRTNE GRADNJE RUDARSKIH MAŠINA

Broj: 02/10 od 01. 02. 2010. god

Korisnik: ThyssenKrupp Fordertechnik GmbH

Adresa: Essen

Predmet ispitivanja: ROTORNI BAGER SchRs 1600/3x25

Mesto ispitivanja: Montažni plac – Pov. kopa Tamnava Zapad

METODA ISPITIVANJA : DM (Preko elektrootpornih mernih dozni)

METROLOŠKA SLEDLJIVOST: INM Certifikat Nº 11.10-139/2007

UGOVOR/PORUDŽBENICA broj: 30184539/AGH/31165 datum: 04.12.2006.

RADNI NALOG 4100621

Opis usluge:

MERENJA TEŽINE GORNJE OBRTNE GRADNJE I ODREĐIVANJA POLOŽAJA PROJEKCIJE TEŽIŠTA ROTORNOG BAGERA SchRs 1600/3x25

Datum ispitivanja: 30.01.2010.

Ispitivanje obavili : mr. Branko Nikolić, dipl. inž. maš. Rajko Spasojević, dipl.inž.el. Petrović Vladimir, el.teh.

PRILOZI I NAPOMENE:

Protokol merenja
 Uverenja o etaloniranju

Vodeći inženjer/Rukovodilac merenja:	Odobrio Šef Laboratorije:
(potpis)	(potpis)
IZJAVA: - Rezultati ispitivanja se odnose samo na mereni obje	ekat.

- Ovaj izveštaj se ne sme umnožavati, izuzev u celini, bez saglasnosti Laboratorije.

1. PRIPREMA PLACA

- Rađeno na montažnom placu Pov. kopa Tamnava Zapad.
- Vetar brzine do V_{max} = 0.8-0.9 m/s.
- Vreme: Oblačno bez padavina sa teperaturom $3-7 \text{ C}^0$.

Slika 1. Izgled bagera na placu

2. PRIPREMA BAGERA

- Bager meren nakon što je u balast sanduk ubačeno 54. 96 t balasta.

- U odnosu namerenje od 19.01.2010. na gornju gradnju je ubačeno:
 - Dva I200- profila procenjene težine 310 kg
 - Korpa za montažu opreme težine 230 kg
 - Cevi za protiv požarnu zaštitu i protiv požarni aparati
 - Pomoćne daske za vulkaniziranje trake ~ 700kg
- Bager zaprljan snegom izgled zaprljanosti dat na slici:

Slika 2. Izgled zaprljanosti bagera

29	1809,7	1893,5	4040,0	4360,3	12103,5	1,087	-0,130
30	1811,5	1896,8	4036,1	4358,9	12103,3	1,084	-0,131
31	1811,7	1896,4	4036,1	4358,2	12102,4	1,084	-0,131
32	1811,2	1894,2	4038,2	4359,3	12102,9	1,086	-0,130
33	1810,1	1892,5	4040,1	4361,3	12104,0	1,087	-0,130
34	1807,2	1888,8	4041,9	4364,3	12102,2	1,090	-0,130
35	1806,7	1888,6	4042,3	4366,0	12103,6	1,090	-0,131
36	1806,4	1889,0	4042,1	4365,7	12103,1	1,090	-0,131
37	1808,4	1891,6	4041,2	4362,4	12103,6	1,088	-0,130
38	1811,0	1895,0	4037,8	4358,8	12102,6	1,085	-0,131
39	1811,4	1896,1	4036,1	4358,8	12102,5	1,084	-0,131
40	1812,2	1895,5	4036,6	4359,0	12103,2	1,085	-0,131
41	1811,6	1894,2	4037,8	4360,1	12103,7	1,085	-0,130
42	1810,5	1892,1	4039,2	4360,4	12102,2	1,087	-0,130
43	1808,6	1889,8	4042,1	4363,6	12104,0	1,089	-0,130
44	1807,3	1889,3	4042,1	4364,7	12103,5	1,090	-0,130
45	1807,4	1890,3	4041,4	4363,5	12102,6	1,089	-0,131
46	1808,5	1892,0	4040,5	4362,4	12103,4	1,088	-0,131
47	1811,2	1894,7	4038,7	4359,3	12103,9	1,085	-0,130
48	1811,9	1895,2	4037,1	4358,5	12102,7	1,085	-0,130
49	1812,7	1894,9	4036,0	4358,8	12102,4	1,084	-0,131
50	1811,8	1892,4	4039,1	4360,6	12104,0	1,086	-0,130
	1808,5	1893,1	4040,6	4361,0	12103,3	1,087	-0,130

KOLUBARA METAL d.o.o., Vreoci Pogon za remont

6.2 UPOREDNI REZULTATI MERENJA

	Fa1 (kN)	Fa2 (kN)	Fb (kN)	Fc (kN)	ΣF (kN)	Xt (m)	Yt (m)
 a) Strela radnog točka u donjem polo- žaju (α= -11.4°) sa etalon teretom od 19.3t na udaljenosti od 32.8 m, 	2390,1	2440,9	3565,1	3901,2	12297,4	0,600	-0,123
b)Strela radnog točka u donjem položaju (α= -11.4°),	1808,5	1893,1	4040,6	4361,0	12103,3	1,087	-0,130

Grafički prikaz rezultata:

Izveštaj broj 02/10

"Final Stability Calculation – Revision 1, Addendum: Modification of ballast" од 08.11. 2011. године

ThyssenKrupp Fördertechnik

Bucket wheel excavator system EPS

1600 SchRs ----- * 25 3

A3 - BWE:

Final stability calculation Rev. 1

Addendum: Modification of ballast

Customer: Order number:

TKF machine No.

General arrangement drawing

EPS / Kolubara Lignite Basin / Tamnava West N - 010 - 00035

4330720

3092

Ular Blenc

Prepared: MI EN 12 8 December 2011 Dipl.-Ing. U. Bleul

Approved:

ThyssenKrupp Fördertechnik

Order-Name: Order-No .: Equipment:

EPS 3092 BWE N 010 00035 Bucket wheel excavator Essen, 08 December 2011

Addendum to "Final stability calculation Rev. 1": Additional required ballast due to modifications after weighing dated January 2010

Weights, centres of gravity

x-axis is defined positiv in conveying direction !

- G_old see group list N-010-00035 dated 07 12 2010 - G_new see group 1st N-010-00035 dated 01 12 2011

Ruckat	verb or at	hoom
DUCKEL	wneer	00011

Bucket wheel boom		coordinates referring to pivor blocket wheel boom								
		re	lated to ground	d, slew centre	x 1 =	-3,878	1*1			
	assembly	group	G_old [t]	G_new [t]	ΔG [t]	x1 [m]	G*x			
Winch gear box from CNZ 200 to CNZ 280	M	33100	0,373	0.742	0,369	-28 400	-10,5			
Base frame for winch drive	M	33100	0,242	0.255	0.013	-28 400	-0.4			
Rope pulleys from 800 to 1200	M	33300	2,292	3,208	0.016	20,000	26.6			
Pulley shaft with bearing	M	33400	0.603	0 664	0.081	20,000	2.3			
Base tramo for rope pulloes	A.A.	3.3800	1.139	1.283	0.144	·29.000	-4.2			
Protective box	M	00966	0.235	0.282	() OAL	-,20,000	1.3			
Hoisting rope drivers cable	RA I	153.10	0.230	0.492	0.256	29.000	-7.4			
Roira reaving drivers cabin	м	30350	0,507	C (usys	0,458	.29,000	E. E.L.			
) Ruckal wheel gear compl	м	51100	00.635	171-685	1.750	- 16 500	45.6			
Take up device head	м	61410	0,079	0,368	0.380	37,700	-10.9			
Dovers cabin guide traine	5	10.1253	10.160	11.705	1.345	-26.000	-38.5			
Drivers eahin suspension	5.	16184	3,202	1 241.7	12.130303	-28.600	0.0			
Drivers caper frame	() ()	76195	5 111	6.034	0.023	28,600	26,4			
Rockbox gades	5	213:56:62	0.000	0.545	0.545	33.000	18.5			
Traveling rail platform	S	76687	3 190	2 094	0.056	+15,000	1 a			
Motor drivers cabin winet	Ğ.	81100	0,090	0,160	0.010	-28,600	2.0			
Cylinder 100/56-700	11	64130	0.144	0.000	-() 1-1-1	-37,700	5.4			
Support drivers cabin	Mrs.;	89500	0.000	0.104	0 104	-28,600	.3.0			
Sum					6,569	-31,047 -	203,9			

Bucket wheel boom & Ballast boom and ballast

coordinates reforms to slew sense , top sortage of platteres related to ground, slew centre (x4 - 0,000 m)

	assembly	duoruu	G_old [r]	G_new (t)	00.01	of [m]	3°x
Hicket wheel boom			0,318		5 560	34 025	220.4
Synchronizing shaft	68	3.1400	0 MA 2	0.420	0.102	11.200	12
Sovar winch anve	5	5560	0.000	1-266	J. Bets	11.200	22.0
Ballast (additional)	v	96000			5,930	34,123	202,3
Sum					13,367	0,000	0,0
		Additiona	l required ba	allast ΔG ≈	6,000	t	2 2 12
For information only:	Ballast acco	rding to "P	reliminary sta	ibility"	197	1	

The complete new ballast (238 t) is lower than the ballast has been considered in the structural analysis (250 t)! Therefore, no further proofs are required!

РОПРИВРЕДА СРЕИЛЕ РУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. Огранак "Колубара-Површински копови" - Барон Сектор Инвестиција и унапређења технолошког процеса 11560 Вреоци, тел. централа: 011/8123-311, lok. 29-52; тел/фах: 011/8121-0 е-mail: investicije@rbkolubara.co.yu	ЛА ⊔ева ^{061; 81}	ЗАРЕВАЦ ац 22-261
<i>7-21-8170</i> дату	YM:	26.12.2011.
Rotorni bager Sch Rs 1600/3x25, pogonski broj G-3, na P Zapadno polje	ΡK T	amnava-
Dopis ThyssenKruppa od 14.12.2011. godine sa instrukci dodatne količine balasta od 6t, zbog dodatne opreme koja bageru u zoni radnog točka i kabine bageriste (E-mail)	jom : a je u	za ubacivanje Igrađena na
	РОПРИВРЕДА СР 5/1/1 РУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. Огранак "Колубара-Површински копови" - Бароц Сектор Инвестиција и унапређења технолошког процеса 11560 Вреоци, тел. централа: 011/8123-311, lok. 29-52; тел/фах: 011/8121-0 е-mail: investicije@rbkolubara.co.yu <i>Z-21-XIFO</i> Дату Rotorni bager Sch Rs 1600/3x25, pogonski broj G-3, na R Zapadno polje Dopis ThyssenKruppa od 14.12.2011. godine sa instrukci dodatne količine balasta od 6t, zbog dodatne opreme koja bageru u zoni radnog točka i kabine bageriste (E-mail)	ОПРИВРЕДА СРБИЈЕРУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. ЛАОгранак "Колубара-Површински копови" - Барошева Сектор Инвестиција и унапређења технолошког процеса 11560 Вреоци, тел. централа: 011/8123-311, lok. 29-52; тел/фах: 011/8121-061; 81 e-mail: investicije@rbkolubara.co.yu7-21-3/140Датум:Rotorni bager Sch Rs 1600/3x25, pogonski broj G-3, na PK T Zapadno poljeDopis ThyssenKruppa od 14.12.2011. godine sa instrukcijom : dodatne količine balasta od 6t, zbog dodatne opreme koja je u bageru u zoni radnog točka i kabine bageriste (E-mail)

PREDMET: Zapisnik o ubačenoj količini balasta od 22.12.2011. godine

*Na osnovu dopisa proizvođača sprave o potrebi ubacivanja dodatne količine balasta, posle reparaturnih radova na bageru u zoni radnog toča i kabine bageriste, u periodu od 15.10. do 07.12.2011. godine; Kolubara Metal d.o.o je izvršio merenje betonskih kocki za punjenje balasta. Izmereno je 1x81 kocka= 3003kg + 1x80kocki=3003kg, ukupne težine 6006kg. O merenju dodatne količine balasta sačinjen je poseban Protokol.

Dana 22.12 2011.godine na planiranom servisu na II-BTO sistemu izvršeno je ubacivanje dodatne količine balasta u levu i desnu kutiju sanduka balasta, od strane Kolubara Metal d.o.o i pod nadzorom Sektora Investicija. Navedeni radovi su registrovani u bagerskoj knjizi.

Obaveza Isporučioca sprave je da uz komplet izvedene dokumentacije za reparaturne radove, dostavi i proračun sa podacima za dodatnu opremu koja je ugrađena na bageru i potrebnu količinu dodatnog balasta za projektovani i registrovani položaj težišta gornje gradnje bagera ustanovljen vaganjem gornje gradnje bagera.

) Navedenu količinu dodatnog balasta treba uneti u Matičnu knjigu bagera.

NAPOMENA:

U prilogu Zapisnika prilaže se dopis TKF i Protokol o merenju dodatne količine balasta.

Za Sektor Investicija

B. Marković, PM za Paket 1

Spanac B. Gréić, Nadzorhi ing. za bager

Za Kolubara Metal d.o.o:

B. Sandić, Rukov. radilišta

Привредно друштво за производњу, прераду и транспорт угља. Рударски басен. "Колубара" д.о.о. Лазаревац. Седиште: 11550 Лазаревац, Светог Саве број 1. Резистровано крд Аконицо за примиски страни ПО.

Регистровано код Азенције за привредне регистре РС, регистрација бр. 2021. (једночпано друштво)

Ubacivanje baritnih kocki u sanduk balasta bagera Sch Rs 1600/3x25

PROTOKOL for Counterweight drw.no. 4 326 457

22.12.2011.

rb	dimenzije	merena količina	merena težina	datum	vreme merenja	ubačena količina	ubačena težina	datum	vreme ubaciva
Leva	strana	dan	2	CARLANDARY AND TRANSPORT					ija
1.	260x260x260	12kom.	446kg						
2.	260x260x260	12kom	442kg						****() ********************************
3.	260x260x260	12kom	444kg						
4.	260x260x260	12kom	447kg						
5.	260x260x260	12kom	443kg						
6.	260x260x260	12kom	446kg					N 1971	
7.	260x260x260	9kom	335kg	53003kg					
Desna	strana		00000						
8	260x260x260	12kom	15710						· · · · · · · · · · · · · · · · · · ·
0.	260x260x260	12kom	457Kg						
10	260x260x260	12kom	4.55KL						
11	260×260×260	12100	45088	••••••••••••••••••••••••••••••••••••••					
11,	260x260x260	12kom	447La						
12.	260×260×260	126011	447Kg						
13.	260x260x260	12KOM	441Kg	520021					
14,	20082008200	akom	298Kg	23003Kg					
15.		i.	1447 HI 1 - 1 - 1	Ukupno 6006kg					
17.				Second					
18,	And States and States and	and the Martine of the Province	A C Marshe LV	and the second sec	States and States and	Marine Stranger	Second Construct of the	La Participation of	TENT - Made and
19.				and the second se	Torres 1. Collectory College	and a second second		CONTRACTORY CONTRACTORY CONTRACTORY	Contraction (Contraction)
20.								100 0	
21.									
22.									
23.									
24:	Weigers (Weigers (States)			and the second		(All and a state of a	and the second second	artige Alexander	Staty Street
25.	All and the second s	No. of Sugar Street				and the second s	and the second second		And Street of Street
26.			and the second second second second	and the second	a second on a second	Contraction of the second s	1.111.12	and the contract of the	Charles of the second second
27.	A CARDON AND A CAR	a the second second				Start Co. Start and	2010, 2010	Provide States of the	
28.			a salati na na na tani ku di ku di ku	lah Kandena Barta yang dengin kerangan yang dari bahar dari bahar di sebahar dari bahar di sebahar di sebahar d	CONTRACTOR CONTRACTOR OF	and the second	The same interview water and the	And the second of the second	2230300000000000000000
29.		C. A. Maria	ANT STOR		AND	and the second		Charles The Berley	State of
30.		1	la de la Constante de Santa de Alida	i hanati gina di affiti na sina di sana na sina na sina sina sina sina si				and the second second second second	- Mineral av Socie
31.	The second second	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J. Will market		1		Address	and the second second	N.W. S. S.
32.	AL CONTRACTOR	State of the second		The Contraction	1000	ine of the second	C. C	ALC: NO. OF STREET	1 - Carlos and
33.					a service of the serv	Carlon and the second second second	Contraction of the local sector of the		Contraction of the second second
34.									
35.									
36.						1	· · · · · · · · · · · · · · · · · · ·		
37.									
38.									
39									
40.									
41.									
42.									
43.		· · · · · · · · · · · · · · · · · · ·							
44									
45.			· · · · · · · · · · · · · · · · · · ·					·····	
46				anne ann an an ann an Arlanda					
47.									
48.									
49									
L						1	1		

"Резултати мерења притисака на mini mess прикључцима на хидрауличним цилиндрима за праћење силе у ужадима роторног багера SchRs 1600/3x25" (извештај "Колубара Метал" од 30.01. 2010. године)

REZULTATI MERENJA PRITISAKA NA MINI MESS PRIKLJUČCIMA NA HIDRAULIČNIM CILINDRIMA ZA PRAĆENJE SILE U UŽADIMA ROTORNOG BAGERA SchRs 1600/3x25

Mereno : 30.01.2010. Tamnava Zapad

TEST 1 : Strela radnog točka u donjem položaju sa etalon teretom od 19.3t na rastojanju od 32.8 m (ispod horizontale; $\alpha = -11.4^{\circ}$),

	Leva	Leva strana		strana
	(bar)	(bar)	(bar)	(bar)
Nulta ravan	90	90	-	89
Podizanje (2 mm)	90	90		89
Spuštanje (2 mm)	89	90	_	89
Podizanje (2 mm)	90	90	-	89

TEST 2 : Strela radnog točka u donjem položaju (ispod horizontale; $\alpha = -11|4^{\circ}$),

	Leva	Desna strana		
	(bar)	(bar)	(bar)	(bar)
Nulta ravan	86	87	-	86
Podizanje (2 mm)	86	87	-	86
Spuštanje (2 mm)	86	86		86
Podizanje (2 mm)	86	87	-	86

Vreoci : 01.02.2010

Merio :

Paunović Željko

Pregledad

Nikolić Branko

"Извод из извештаја о испитивању вагањем горње обртне градње рударских машина" (извештај "Колубара Метал" број 1/14 од 27.01. 2014. године)

Jednačine težišta

$$X_T = (-2.8 * F_{A1} - 2.8 * F_{A2} + 2.8 * F_B + 2.8 * F_C) / (F_{A1} + F_{A2} + F_B + F_C)$$

$$Y_T = (3.9* F_{A1} - 3.9* F_{A2} + 3.9* F_B - 3.9* F_C) / (F_{A1} + F_{A2} + F_B + F_C)$$

Mereno 30.01.2010.	Fa1 (kN)	Fa2 (kN)	Fb (kN)	Fc (kN)	ΣF (kN)	Xt (m)	Yt (m)
 a) Strela radnog točka u donjem polo- žaju (α= -11.4°) sa etalon teretom od 19.3t na udaljenosti od 32.8 m, 	2390,1	2440,9	3565,1	3901,2	12297,4	0,600	-0,123
b)Strela radnog točka u donjem položaju (α= -11.4°),	1808,5	1893,1	4040,6	4361,0	12103,3	1,087	-0,130

	Mereno 25.01.2014.	Fa1 (kN)	Fa2 (kN)	Fb (kN)	Fc (kN)	ΣF (kN)	Xt (m)	Yt (m)
a)	Strela radnog točka u donjem polo-žaju na 0.5m od planuma sa etalon teretom od 19t na udaljenosti od 32.8 m,	4038,2	4207,6	2381,2	2527,0	13154,0	-0,710	-0,093
b)	Strela radnog točka u donjem položaju na 0.5m od planuma	3468,7	3614,0	2888,7	2977,1	12948,4	-0,263	-0,070
c)	Strela radnog točka u horizontalanom položaju	3501,2	3552,0	2860,1	3056,8	12970,1	-0,245	-0,074

27.01.2014.g.

Vodeći inženjer/Rukovodilac merenja:

Rajko Spasojević, dipl.inž.el

прилог 9

Шема поужавања котураче за подизање стреле ротора (цртеж број 4324042)

Диспозиција мерних места на линији мониторинга ("TRCpro" d.o.o.)

1-USKA-SRT 2-LAMELA-SRT 3-LAMELA-KATARKA 4-USKA-KATARKA 5-USKA-STUB 6-LAMELA-STUB 7-LAMELA-BALAST 8-USKA-BALAST

Lamela – strela radnog točka (2-LAMELA-SRT):

Lamela – katarka (3-LAMELA-KATARKA):

Uška – katarka (4-USKA-KATARKA):

Uška - stub (5-USKA-STUB):

Lamela - stub (6-LAMELA-STUB):

Затезне карактеристике материјала од кога су израђене ушке (EN 10025)

EN 10025-2:2004 (E)

Desig	gnation		Minimum yield strength <i>R</i> eн ^a MPa ^b							Tensile strength <i>R</i> _m ^a MPa ^b					
			Nominal thickness mm					Nominal thickness mm							
According EN 10027-1 and CR 10260	According EN 10027-2	≤ 16	> 16 ≤ 40	> 40 ≤ 63	> 63 ≤ 80	> 80 ≤ 100	> 100 ≤ 150	> 150 ≤ 200	> 200 ≤ 250	> 250 ≤ 400°	< 3	≥ 3 ≤100	> 100 ≤ 150	> 150 ≤ 250	> 250 ≤ 400°
S235JR S235J0 S235J2	1.0038 1.0114 1.0117	235 235 235	225 225 225	215 215 215	215 215 215	215 215 215	195 195 195	185 185 185	175 175 175	- - 165	360 to 510 360 to 510 360 to 510	360 to 510 360 to 510 360 to 510	350 to 500 350 to 500 350 to 500	340 to 490 340 to 490 340 to 490	- 330 to 480
S275JR S275J0 S275J2	1.0044 1.0143 1.0145	275 275 275	265 265 265	255 255 255	245 245 245	235 235 235	225 225 225	215 215 215	205 205 205	- - 195	430 to 580 430 to 580 430 to 580	410 to 560 410 to 560 410 to 560	400 to 540 400 to 540 400 to 540	380 to 540 380 to 540 380 to 540	- 380 to 540
S355JR S355J0 S355J2 S355K2	1.0045 1.0553 1.0577 1.0596	355 355 355 355	345 345 345 345 345	335 335 335 335	325 325 325 325 325	315 315 315 315 315	295 295 295 295 295	285 285 285 285 285	275 275 275 275 275	- 265 265	510 to 680 510 to 680 510 to 680 510 to 680	470 to 630 470 to 630 470 to 630 470 to 630	450 to 600 450 to 600 450 to 600 450 to 600	450 to 600 450 to 600 450 to 600 450 to 600	- 450 to 600 450 to 600
S450J0 ^d	1.0590	450	430	410	390	380	380	-	-	-		550 to 720	530 to 700		

Table 7 - Mechanical properties at ambient temperature for flat and long products of steel grades and qualities with values for the impact strength

^a For plate, strip and wide flats with widths ≥ 600 mm the direction transverse (t) to the rolling direction applies. For all other products the values apply for the direction parallel (I) to the rolling direction.

^b 1 MPa = 1 N/mm².

^c The values apply to flat products.

^d Applicable for long products only.

"Proofs and special provisions for stays of BWB and CWB" (KRUPP, 30.11. 2007.)

Eye plates according to DIN 22261-2 : 1998-01

Dimensions:

R:	29,00 cm
r:	11,00 cm
e:	8,50 cm
t:	10,00 cm
p ₁ +p ₂ :	4,00 mm
β:	0
α	3,744
δ:	0.000
C.	18,00 cm

Material:	St52	
OR.K	32.00	kN/cm²
Υм:	1,00	

General stress analysis:

135° < β ≤ 1**80**°

μ:	0,33	μt fretting.	0,80				
Load case:	Н	HZ	HZS	HZG	HZG RR	RR: Fretting bear	ng
Z max.	6264,60	5559,20	5685,00	5343,40	4597.83	kN (γ _F times lo	ads)
σ _{nZ} :	17,40	15,44	15,79	14,84	12.77	KN/cm²	
M _e :	4167,00	3694,70	3333,60	3055,80	3055,77	kNcm	
M _r :	22740,50	20179,90	20636,55	19396,54	40460,94	kNcm	
σ _{nµ} :	0,74	0,65	0,59	0,54	0,54	kN/cm²	
1,4 σ _n :	25,39	22,53	22,93	21,54	18,64	kN/cm²	
of R.d.	32,00	32,00	32,00	32.00	32.00	kN/cm²	
or pfh.	29,66	26.32	26,92	25,30		kN/cm²	
α perm. pm:	32,00	32,00	32,00	32,00		kN/cm²	
pfh: pressure on the face of	of the hole						

Fatigue strength analysis:

µFs:	0,33		
1	max	min	
Z:	4263,10	2911.20	KN
σ _{n2}	11,84	8,09	kN/cm²
M _e :	730,20	730,20	kNcm
Mr	15475,05	10567,66	kNcm
σ _{nu} :	0,13	-0,13	kN/cm²
$\sigma_0 \mid \sigma_0$:	11.97	7.96	
$\Delta\sigma$ permissible.	20,00	kN/cm²	
perm $\Delta \sigma_{Be} / perm \Delta \sigma$	0,773		
k:	1,000		
max Act:	15.03	kN/cm² ≺=	15,46 kN/cm ²

Member outside sphere of influence of welded connections.

Eye plates according to DIN 22261-2 : 1998-01

Dimensions:

Matorial	Q150		
C:		18,00	cm
δ:		0,000	
α!		3,744	
β:			0
$p_1 + p_2$:		4,00	mm
t:		9,00	cm
e		8,50	cm
r:		11,00	cm
R:	h.	29,00	cm

Material:	St52	
OR.K.	32,00	kN/cm ^z
γm:	1,00	

General stress analysis:

μ:	0,33	μ fretting.	0,80			
Load case:	Н	HZ	HZS	HZG	HZG RR	RR: Fretting bearing
Z max.	5,556,30	4927,90	5032,10	4615,70	4075,71	KN (yF times loads)
σ _{nZ} :	17,10	15,21	15,53	14,25	12,58	kN/cm ²
M.	4401,00	3902,20	3520,80	3227,40	3227,38	kNcm
M _r :	20169,37	17888,28	18266.52	16754,99	35866,22	kNcm
σ _{nµ} :	0,86	0,77	0,69	0,63	0,63	kN/cm²
1,4 σ _n :	25,22	22,37	22,71	20.83	18,50	kN/cm ²
σR,d	32.00	32.00	32,00	32,00	32,00	kN/cm²
σ pfh:	29,37	26,05	26,60	24,40		kN/cm ²
o perm. pfh	32,00	32.00	32.00	32.00		kN/cm²
pfh: pressure on the face of	of the hole					

Fatigue strength analysis:

μ Fs:	0,33				
	max	min		1	
Z: `	3526,60	24	108,90	KN	
σ _{nZ} :	10.88		7.43	kN/cm ²	
M _e :	396,50		396,50	kNcm	
M _c :	12801.56	87	44.31	kNcm	
σ _{nu} :	0,08		-0,08	kN/cm²	
$\alpha^0 = \alpha^n$:	10,96		7,36		
Δσ permissible	20,00	kN/cm²			
perm. $\Delta \sigma_{\rm BP}$ / perm. $\Delta \sigma_{\rm c}$	0,773				
К:	1.000				
max $\Delta \sigma$:	13,50	kN/cm² <:	=	15.46	kN/cm²

Member outside sphere of influence of welded connections.

12. ДОКАЗ О ПРИМЕНИ ТЕХНИЧКОГ РЕШЕЊА

Као валидан доказ, у Прилогу 2 дата је потврда корисника о примени. Осим тога, као доказ научног потенцијала техничког решења, у Прилогу 3 дат је рад публикован у часопису са SCI листе (категорија M22).

13. ЛИСТА РАНИЈЕ ПРИХВАЋЕНИХ ТЕХНИЧКИХ РЕШЕЊА

13.1 Срђан Бошњак

- 1. Петковић, З., Бошњак, С.: Систем механизације навоза за брод масе 1800 t, рађено за предузеће "Shipyard Bomex 4M" Зрењанин, Универзитет у Београду Машински факултет, Београд, 2010.
- 2. Петковић, З., **Бошњак, С.**, Гњатовић, Н., Ђорђевић, М.: Лабораторијска станица за идентификацију локалног дејства точкова, Универзитет у Београду Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З., Гњатовић, Н., Миленовић, И., Михајловић, В., Милојевић, Г.: Редизајн обртне платформе роторног багера SRs 1200, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови — Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2012.
- Бошњак, С., Петковић, З., Ђорђевић, М., Гњатовић, Н.: Ревитализација роторног багера SchRs 350, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2011.
- Бошњак, С., Лучанин, Б., Петковић, З., Милованчевић, М., Огњановић, М., Обрадовић, А., Зрнић, Н, Гашић, В., Гњатовић, Н., Ђорђевић, М.: Редизајн и унапређење подструтура роторних багера "РБ Колубара", рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара -Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З. Гњатовић, Н.: Редизајн обртне платформе роторног багера Orenstein&Koppel SchRs 630-25/6, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.
- 7. Бошњак, С., Петковић, З., Ђорђевић, М.: Унапређење конструкције кашика и тела ротора багера FAM SRs 1201.24/4, рађено за "Колубара метал" д.о.о. Вреоци, Универзитет у Београду Машински факултет, Београд, 2010.
- Петковић, З., Бошњак, С.: Портална дизалица за опслуживање отвореног складишта лима, рађено за "Shipyard Bomex 4 М" - Зрењанин, Универзитет у Београду - Машински факултет, Београд, 2010.
- Арсић, М., Бошњак, С., Ракин, М., Вељовић, А.: Оцена интегритета и процена века заварених конструкција роторног багера применом испитивања без разарања и механике лома, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Институт за испитивање материјала, Београд, 2009.
- Арсић, М., Бошњак, С., Ракин, М., Младеновић, М.: Оцена поузданости заварених конструкција роторног багера на основу хипергеометријске расподеле грешака утврђених испитивањем заварених спојева методом једноструког избора, рађено за ПД РБ «Колубара » д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Институт за испитивање материјала, Београд, 2009.

13.2 Небојша Гњатовић

- 1. Петковић, З., Бошњак, С., **Гњатовић, Н.**, Ђорђевић, М.: Лабораторијска станица за идентификацију локалног дејства точкова, Универзитет у Београду Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З., Гњатовић, Н., Миленовић, И., Михајловић, В., Милојевић, Г.: Редизајн обртне платформе роторног багера SRs 1200, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2012.
- Бошњак, С., Петковић, З., Ђорђевић, М., Гњатовић, Н.: Ревитализација роторног багера SchRs 350, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2011.
- Бошњак, С., Лучанин, Б., Петковић, З., Милованчевић, М., Огњановић, М., Обрадовић, А., Зрнић, Н, Гашић, В., Гњатовић, Н., Ђорђевић, М.: Редизајн и унапређење подструтура роторних багера "РБ Колубара", рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара -Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З. Гњатовић, Н.: Редизајн обртне платформе роторног багера Orenstein&Koppel SchRs 630-25/6, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.

13.3 Зоран Петковић

- 1. Петковић, З., Бошњак, С.: Систем механизације навоза за брод масе 1800 t, рађено за предузеће "Shipyard Bomex 4M" Зрењанин, Универзитет у Београду Машински факултет, Београд, 2010.
- 2. Петковић, З., Бошњак, С., Гњатовић, Н., Ђорђевић, М.: Лабораторијска станица за идентификацију локалног дејства точкова, Универзитет у Београду Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З., Гњатовић, Н., Миленовић, И., Михајловић, В., Милојевић, Г.: Редизајн обртне платформе роторног багера SRs 1200, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2012.
- 4. Бошњак, С., **Петковић, З.**, Ђорђевић, М., Гњатовић, Н.: Ревитализација роторног багера SchRs 350, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови — Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2011.
- Бошњак, С., Лучанин, Б., Петковић, З., Милованчевић, М., Огњановић, М., Обрадовић, А., Зрнић, Н, Гашић, В., Гњатовић, Н., Ђорђевић, М.: Редизајн и унапређење подструтура роторних багера "РБ Колубара", рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара -Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.
- Бошњак, С., Петковић, З. Гњатовић, Н.: Редизајн обртне платформе роторног багера Orenstein&Koppel SchRs 630-25/6, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2010.

- Бошњак, С., Петковић, З., Ђорђевић, М.: Унапређење конструкције кашика и тела ротора багера FAM SRs 1201.24/4, рађено за "Колубара метал" д.о.о. - Вреоци, Универзитет у Београду - Машински факултет, Београд, 2010.
- 8. Петковић, З., Бошњак, С.: Портална дизалица за опслуживање отвореног складишта лима, рађено за "Shipyard Bomex 4 М" - Зрењанин, Универзитет у Београду - Машински факултет, Београд, 2010.

13.4 Горан Милојевић

 Бошњак, С., Петковић, З., Гњатовић, Н., Миленовић, И., Михајловић, В., Милојевић, Г.: Редизајн обртне платформе роторног багера SRs 1200, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2012.

13.5 Иван Миленовић

 Бошњак, С., Петковић, З., Гњатовић, Н., Миленовић, И., Михајловић, В., Милојевић, Г.: Редизајн обртне платформе роторног багера SRs 1200, рађено за ПД РБ "Колубара" д.о.о. - Огранак "Колубара - Површински копови – Барошевац" - Лазаревац, Универзитет у Београду - Машински факултет, Београд, 2012.

14. ЛИТЕРАТУРА

- [1] S. Bošnjak, N. Gnjatović, S. Savićević, M. Pantelić, I. Milenović, Basic parameters of the static stability, loads and strength of the vital parts of the bucket wheel excavator's slewing superstructure, Journal of Zhejiang University - SCIENCE A 17(5) (2016) 335–352. https://doi.org/10.1631/jzus.A1500037
- [2] S. Bošnjak, D. Oguamanam, N. Zrnić, The influence of constructive parameters on response of bucket wheel excavator superstructure in the out-of-resonance region, Archives of Civil and Mechanical Engineering 15(4) (2015) 977–985. https://doi.org/10.1016/j.acme.2015.03.009
- [3] D. Pietrusiak, P. Moczko, E. Rusiński, World's largest movable mining machine vibration testing - numerical and experimental approach, In: Sas P, Moens D, van de Walle A (eds) Proceedings of International Conference on Noise and Vibration Engineering (ISMA2016) and International Conference on Uncertainty in Structural Dynamics (USD2016), Leuven: Katholieke Universitet Leuven; 2016, p. 2287–2299.

http://past.isma-isaac.be/downloads/isma2016/papers/isma2016 0217.pdf

- [4] T. Smolnicki, G. Pękalski, J. Jakubik, P. Harnatkiewicz, *Investigation into wear mechanisms of the bearing raceway used in bucket wheel excavators*, Archives of Civil and Mechanical Engineering 17(1) (2017) 1–8. https://doi.org/10.1016/j.acme.2016.07.008
- [5] T. Smolnicki, M. Stańco, D. Pietrusiak, *Distribution of loads in the large size bearing problems of identification*, Tehnički Vjesnik Technical Gazette 20(5) (2013) 831–836. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=161797
- [6] *Coal industry across Europe*, 6th edition, EURACOAL European Association for Coal and Lignite AISBL, Brussels, 2017.

<u>file:///C:/Users/SB/Downloads/EURACOAL-Coal-industry-across-Europe-6th%20(2).pdf</u>
 P. Maslak, G. Przybylek, T. Smolnicki T, *Comparison of selected methods for the determination*

 [7] P. Maslak, G. Przybylek, T. Smolnicki T, Comparison of selected methods for the determination of the center of gravity in surface mining machines, Materials Today: Proceedings 4(5, Part 1) (2017) 5877–5882.

https://doi.org/10.1016/j.matpr.2017.06.062

[8] J. Augustynowicz, K. Dudek, A. Figiel, J. Nowak, W. Kluczkiewicz, Doświadczalne wyznaczanie położenia środka ciężkości obrotowego nadwozia koparek kołowych, Górnictwo Odkrywkowe 52(3–4) (2011) 92–95.

http://www.igo.wroc.pl/wp-content/uploads/2015/09/GO 3 4 2011 90 93.pdf

- [9] T. Smolnicki, M. Stańco, Determination of Centre of Gravity of Machines with the Rail Undercarriage, Solid State Phenomena 165 (2010) 359–364. <u>https://doi.org/10.4028/www.scientific.net/SSP.165.359</u>.
- [10] N. Nan, I. Kovacs, F. Popescu, Balance control by weighting and tensiometric measurements of bucket wheel excavators, WSEAS Transactions on Systems and Control 3(11) (2008) 927–938. <u>http://www.wseas.us/e-library/transactions/control/2008/31-468.pdf</u>
- [11] W. Durst, W. Vogt, *Bucket Wheel Excavator*, Trans Tech Publications, Clausthal-Zellerfeld, 1988.
- [12] AS4324.1: Mobile equipment for continuous handling of bulk materials Part 1 General requirements for the design of steel structures. Standards Australia; 1995.
- [13] G. Pajer, M. Pfeifer, F. Kurth, Tagebaugroßgeräte und Universalbagger, VEB Verlag Technik, Berlin, 1971.

- [14] L. Rasper, *Der Schaufelradbagger als Gewinnungsgerät*, Trans Tech Publications, Clausthal-Zellerfeld, 1975.
- [15] Н.Г. Домбровский,: Многоковшовые экскаваторы, конструкции, теория и расчет, Машиностроение, Москва, 1972.
- [16] DIN 22261-2: Bagger, Absetzer und Zusatsgeräte in Braunkohlentagebauen-Teil 2: Berechnungsgrundlagen. Berlin: Deutsches Institut für Normung, 2016.

15. ПРИЛОЗИ

15.1 ПРИЛОГ 1: УГОВОР

	5p.jap
	Датум
PROBALINONM LEHTAP	Opr.jeg
74 /1	Toreson de la construcción de la constru
19.111 2012. N	о јавн бро
Краља 25	

JABHE	HABABKE 2
Бр.јавно набазике	Y-NZYYAI MB 41FT
Датум одлуке о по 25	кретању јавне набавке 11 204
Орг.јед. Бр.одлуке	Apparent Yr.epedH661
04 4-4.7-7	-244/5 3.086.000,a

- WORVEADA" DOO DABAPEBAL

РУДАРСКИ БАСЕН "КОПУБАРА" д.о.о. 5001: 2-01- J-477 DaTVM: 23-02 2012 ЛАЗАРЕВАЦ

УГОВОР 10 ЈАВНОЈ НАБАВЦИ УСЛУГА БРОЈ У-1244/11МВ-4НТ

Закључен између:

1.ПРИВРЕДНОГ ДРУШТВА ЗА ПРОИЗВОДЊУ, ПРЕРАДУ И ТРАНСПОРТ УГЉА, РБ "КОЛУБАРА" д.о.о. Лазаревац, ул. Светог Саве бр.1, ПИБ 101138490, Мат.бр.07788053, Тек.рач: 205-23250-81 Комерцијална банка АД Београд, кога заступа Директор Небојша Ћеран, дипл.инж.техн. (у даљем тексту: Наручилац),

И

2. "ИНОВАЦИОНИ ЦЕНТАР МАШИНСКОГ ФАКУЛТЕТА У БЕОГРАДУ" Београд, ул. Краљице Марије бр.16, ПИБ: 104274412, Мат.бр. 20134798, Тек.рачун: 160-252408-34, кога заступа проф.др. Војкан Лучанин, (у даљем тексту: Извршилац)

ПРЕДМЕТ УГОВОРА

Члан 1.

Предмет овог Уговора је пружање услуге "Израда пројекта стабилности горње градње на багеру SchRs 1600(погонски бр.3)на ПК Тамнава-Западно поље према пројектном задатку", у свему према прихваћеној Понуди Извршиоца бр. 382/11 од 26.12.2011. године, која чини саставни део овог Уговора, а која је Одлуком Наручиоца о избору најповољније понуде број 4-4.5-71-244/5 од 30.01.2012. године у поступку ЈН мале вредности, изабрана као најповољнија.

ЦЕНА И НАЧИН ПЛАЋАЊА

Члан 2.

Уговорне стране утврђују цену предметне услуге по прихваћеној Понуди Извршиоца, у износу од 2086.000,00 дин. (2000 милионаосамдесетшестхиљада) дин. без ПДВ-а, односно 2641.480,00 дин (2000 милионашесточетрдесетједнахиљадачетиристоосмадесет) дин. са ПДВ-ом.

Члан 3.

Цену из члана 2. овог Уговора Наручилац ће Извршиоцу платити у року од 30 (тридесет) дана од дана пријема фактуре на архиву Наручиоца уз прилагање обострано потписаног записника о извршеној услузи.

POK

Члан 4.

Рок за почетак посла почиње да тече одмах по обостраном потписивању уговора.

Рок извршења услуге је 90 (деведесет) дана од обострано потписаног уговора.

УГОВОРНЕ КАЗНЕ

Члан 5.

У случају кашњења са извршењем уговорених услуга у односу на уговорени рок који није последица узрока из члана 4. став 3. овог Уговора, Извођач ће Наручиоцу за неизвршене услуге платити пенале у износу од 2‰ дневно, али не више од 5% од укупне уговорене вредности.

ОБАВЕЗЕ ИЗВРШИОЦА

Члан 6.

Извршилац се обавезује да услугу из члана 1. овог Уговора изврши у свему према усвојеној Понуди бр. 382/11 од 26.12.2011.год. одредбама овог Уговора, законским прописима, нормативима и стандардима који важе за ову врсту посла.

ОБАВЕЗЕ НАРУЧИОЦА

Члан 7.

Наручилац се обавезује да плаћање за извршену Услугу изврши у року из члана 3.овог Уговора и да одреди одговорно лице за координацију у реализацији предметне услуге.

СРЕДСТВА ФИНАНСИЈСКОГ ОБЕЗБЕЂЕЊА

Члан 8.

Извршилац се обавезује да ће приликом потписивања Уговора предати соло меницу са меничним овлашћењем на износ од 10% вредности уговора са ПДВом и копијама картона депонованих потписа лица овлашћених за располагање средствима текућих рачуна код свих банака који важе у моменту достављања меничног овлашћења са роком важности до крајњег рока пружања услуга, као гаранцију за добро извршење посла. У случају промене овлашћених лица, Извршилац је дужан да Наручиоцу и банци достави одговарајући истоветни писани документ, тј. да обезбеди наплативост менице у случају овакве промене.

РЕШАВАЊЕ СПОРОВА

Члан 9.

Уговорене стране су сагласне да све спорове који евентуално настану применом овог Уговора првенствено решавају међусобним споразумом. Уколико се настали спор не може решити споразумно, утврђује се надлежност Привредног суда у Београду.

- 286 -
РАСКИД УГОВОРА

Члан 10.

Раскид Уговора је условљен обостраном сагласношћу уговорених страна, а у случају да једна од уговорених страна самовољно изјави да раскида Уговор, обавезна је да другој страни надокнади све настале штете и трошкове проистекле због раскида Уговора, а у складу са Законом о облигационим односима.

До раскида Уговора може доћи на захтев било које од уговорених страна у случају да друга страна не испуњава своје обавезе утврђене овим Уговором, са правом другог уговорача да потражује исплату накнаде штете у висини настале штете.

ОСТАЛЕ ОДРЕДБЕ

Члан 11.

Уговорне стране су сагласне да се измене и допуне уговора могу вршити искључиво у писаној форми уз обострану сагласност уговорних страна.

Члан 12.

На сва питања која нису регулисана овим Уговором примењиваће се одредбе Закона о облигационим односима и других закона везаних за предмет Уговора.

Члан 13.

Овај Уговор ступа на снагу даном обостраног потписивања од стране овлашћених лица уговорних страна.

Члан 14.

Овај Уговор је сачињен у 6 (шест) истоветних примерака од којих по 3 (три) потписана и оверена примерка задржава свака од уговорних страна.

УГОВОРНЕ СТРАНЕ

ИЗВРШИЛАЦ								
Иновациони центар								
машинског фа	култета"							
LOL	N X							

НАРУЧИЛАЦ

ПД РБ "Колубара" д.о.о. Maul

Проф.др. Војкан Лучанин

Небојша Ћеран, дипл. инж. тех

РЕБАЦ 2
14
Tomossieui
Taled
DEOPA
својеручни потлио
M. Dur
Toures
28

Прилог 1

ПРОЈЕКТНИ ЗАДАТАК

Образложење

Због увођења система за мониторинг багера Sch Rs 1600 (ГЗ) неопходно је извршити статички прорачун и прорачун стабилности реконструисане горње градње багера. Наведени прорачуни би били база за проверу свих релевантних параметара неопходних за нормалан, безбедан и поуздан рад (вибрације и напонска стања) као и за технолошке процесе током одржавања машне.

Садржај пројекта

- 1. Одређивање оптерећења горње градње према стандарду DIN 22261-2, за све услове експлоатације и одржавања машине.
- 2. Прорачун сила које оптерећују ротор (радни точак) током откопавања, за све технолошке режиме рада багера.
- 3. Одређивање оптерећења потребних за прорачун погонске чврстоће, односно замора, сагласно стандарду EN 1993-1-9.
- 4. Израда прегледних цртежа системских мера елемената носеће конструкције.
- 5. Израда коначноелементног модела горње градње багера
- 6. Анализа напонско-деформационог стања горње градње багера, за све услове експлоатације и одржавања машине.
- 7. Одређивање промена напона на местима предвиђеним за уградњу мерних трака намењених за "online" и "ofline" праћење напонских стања носеће конструкције. Промене напона израчунати за технолошке режиме који су предвиђени у одељку 8 Пројекта праћења челичне конструкције багера Sch Rs 1600/3x25 (ГЗ) - Тамнава западно поље («Снимање на одабраним елементима носеће челичне конструкције у различитим технолошким режимима рада (динамичко стање)»).
- 8. Прорачун напонских стања на местима уградње мерних трака за фазу «нултог мерења», односно за случај ослањања багера на привремене ослонце, или за неки други усвојени «нулти положај».
- 9. Прорачун носивости и прорачун на замор остварених веза елемената на којима се постављају мерне траке, као и прорачун ушки сагласно одредбама стандарда DIN 22261-2.
- 10. Утврђивање граничних вредности промена напона у мерним тачкама за поједине режиме рада багера пред активирање аларма, односно пред искључење рада багера (достизање максималног напона за случај оптерећења HZS према стандарду DIN 22261-2).
- 11. Прорачун сила у ужадима ради укључивања давача сила у ужадима у систем мониторинга.
- 12. Идентификација напонско-деформационог стања у канџама.
- 13. Идентификација напонско-деформационог стања момент полуге погона ротора.
- 14. Упоредна анализа прорачунских и експерименталних истраживања напонских стања елемената носеће конструкције.

15.2 ПРИЛОГ 2: ПОТВРДА КОРИСНИКА

РУДАРСКИ БАСЕН "КОЛУБАРА" д.о.о. Број: 5-21-1264 Датум: 20,01,2015 ЛАЗАРЕВАЦ 12

Универзитет у Београду Иновациони Центар Машинског факултета Београд, Краљице Марије 16

Продекану за НИД Проф. др Војкан Лучанин

Предмет: Мишљење корисника о техничком решењу

На молбу проф. др Срђана Бошњака, достављамо следеће:

МИШЉЕЊЕ

о техничком решењу под називом

"Примена 3Д модела за аналитичко-експериментало одређивање параметара статичке стабилности и спољашњег оптерећења роторног багера"

чији су аутори: проф. др Срђан Бошњак, асистент Небојша Гњатовић, проф. др Зоран Петковић, истраживач-сарадник Горан Милојевић, истраживач-сарадник Иван Миленовић и истраживач-сарадник Александар Стефановић.

> Руководилац Сектора инвестиција Звонко Белаћевић, дипл. руд. инж.

15.3 ПРИЛОГ 3: РАД ПУБЛИКОВАН У ЧАСОПИСУ СА SCI ЛИСТЕ (категорија: M22) (<u>https://doi.org/10.1631/jzus.A1500037</u>) Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) ISSN 1673-565X (Print); ISSN 1862-1775 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn

Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator's slewing superstructure^{*}

Srđan M. BOŠNJAK^{†1}, Nebojša B. GNJATOVIĆ¹, Sreten D. SAVIĆEVIĆ², Milorad P. PANTELIĆ³, Ivan Lj. MILENOVIĆ¹

(¹Faculty of Mechanical Engineering, University of Belgrade, Belgrade 11120, Serbia) (²Faculty of Mechanical Engineering, University of Montenegro, Podgorica 81000, Montenegro) (³Faculty of Technical Sciences, University of Kragujevac, Čačak 32000, Serbia) [†]E-mail: sbosnjak@mas.bg.ac.rs

Received Feb. 20, 2015; Revision accepted May 22, 2015; Crosschecked Apr. 7, 2016

Abstract: Determining a bucket wheel excavator (BWE)'s slewing superstructure weight and its center of gravity (COG) is of extreme importance not only in the design phase, but also after the completion of the erection process and during the operation of the machine. This paper presents a critical comparative analysis of the basic parameters of the static stability of a BWE 1600 superstructure, with the parameters being obtained by both analytical and experimental procedures. The analysis shows that a relatively small difference in superstructure mass, obtained by calculation, leads to a relatively large unfavorable shifting of its COG, necessitating a significant increase in counterweight mass for balancing. A procedure for superstructure 3D model mass correction is presented based on results obtained by weighing after the completion of the erection process. The developed model provides enough accuracy to determine the superstructure's COG in the entire domain of the bucket wheel boom inclination angle, and enables accurate load analysis of the superstructure's vital parts. The importance of this analysis is reinforced by the finding that the procedure prescribed by standard DIN 22261-2 gives results which are not on the side of safety, as shown by an example of strength analysis of a bucket wheel boom stays' end eyes.

Key words: Bucket wheel excavator (BWE), Slewing superstructure, Parameters of the static stability, Loads, Strength http://dx.doi.org/10.1631/jzus.A1500037 CLC number: TD422

1 Introduction

Bucket wheel excavators (BWEs) form the backbone of open cast mining systems and largely determine their output. BWEs operate in very harsh conditions, being exposed to extreme dynamic and stochastic loads. Improvements have been made in the estimation of working loads (Czmochowski, 2008; Bošnjak *et al.*, 2009b; 2012; Gottvald and Kala, 2012), calculation methods (Bošnjak *et al.*, 2006; Gottvald, 2010; Rusiński *et al.*, 2010b; 2012), production technologies and monitoring of vital subsystems (Bartelmus, 2006; Rișteiu *et al.*, 2006; Yin *et al.*, 2007; 2008; Bartelmus and Zimorz, 2009). However, failures of structural elements (Bošnjak *et al.*, 2009a; Rusiński *et al.*, 2010a; Bošnjak and Zrnić, 2012) and mechanisms (Dudek *et al.*, 2011; Savković *et al.*, 2011) are almost inevitable during BWE operation.

The slewing superstructure of the BWE 1600 (Fig. 1), consists of two main substructures: the substructure (SuS) of the bucket wheel boom (BWB) with mast 1 and BWB stays (SuS1) (Fig. 2); the substructure of the counterweight boom (CWB) with a slewing platform, mast 2, and CWB stays (SuS2) (Fig. 3). Changing the BWB inclination angle (α_{BWB}) is realized by means of two winches (Fig. 1).

^{*} Project supported by the Ministry of Education, Science and Technological Development of Serbia Funded Project (No. TR35006)
© ORCID: Srdan M. BOŠNJAK, http://orcid.org/0000-0002-6571-8836
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Fig. 1 Main parts of the BWE 1600 (a) and BWB inclination angle (b)

1: slewing superstructure; 2: substructure; 3: traveling mechanism; 4: winches for BWB positioning

Fig. 2 Main parts of the SuS1 1: BWB; 2: mast 1; 3: BWB stays

Fig. 3 Main parts of the SuS2 1: CWB with slewing platform; 2: mast 2; 3: CWB stays; 4: counterweight (CW) box

The slewing superstructure parameters largely determine the basic operation characteristics, reliability, and safety of a BWE. The parameters may be classified into three main groups: (a) those which determine the static stability of the superstructure; (b) those which determine the strength of the superstructure, and (c) those which determine the dynamic behavior of the superstructure. The common denominators of all these parameters are the mass of the superstructure and its distribution along the structure. That is why the basic parameters of static stability (BPSS), above all the weight and the position of the center of gravity (COG), must be carefully determined in all phases of BWE design. Even with world-renowned manufacturers, significant differences in these superstructure parameters appear during BWE design development, usually as a consequence of subsequent buyer requests, or the inability to purchase components predefined by the project. That is also why, after the first BWE erection, the weighing of the superstructure and determination of its COG position must be carried out to validate the design parameters (Durst and Vogt, 1988; Nan et al., 2008). Deviations in the superstructure's COG position in relation to its designed position need to be compensated by changing the CW mass.

This paper presents:

1. The results of analytical-numerical investigations of BPSS at various stages of BWE 1600 project development. These investigations were based on:

(1) The preliminary stability calculation provided by the BWE manufacturer (Variant 1, V1);

(2) The final stability calculation provided by the BWE manufacturer (Variant 2, V2);

(3) A 3D model of the BWE superstructure (Variant 3, V3) (Figs. 1–3);

(4) A 3D model of the BWE superstructure, with the mass corrected according to the results of the first weighing (Variant 4, V4);

(5) A final stability calculation, with the mass corrected according to the results of the first weighing (Variant 5, V5).

2. The results of the two weighings, made on site, after the first erection of the machine.

3. The results of a strength analysis of the vital parts of the superstructure.

The results presented in this paper are important because the same or similar problems could arise in other surface mining machines such as spreaders, mobile conveyors, and draglines.

2 Analytical determination of the BPSS: V1 vs. V2

The final shaping of the carrying structure and its adjustment with the mechanical subsystems and equipment, i.e., transformation from V1 to V2, causes a change in the superstructure BPSS (Table 1, Figs. 4 and 5).

Fig. 4 COG abscissas of the superstructure without the CW mass ($x_{COG,CW=0}$): V1 vs. V2

Table 1Mass of the superstructure and its substructures:V1 vs. V2

	Mass (t)						
Item	SuS1	SuS2	Total without CW mass				
V1	451.395	540.767	992.162				
V2	467.518	509.852	977.370				
Difference, "V2-V1"	16.123	-30.915	-14.792				

Fig. 5 Mass of the CW (m_{CW0}) for balancing the superstructure deadweight: V1 vs. V2

3 Discussion 1: V1 vs. V2

The data presented in Table 1 show that a relatively small difference in superstructure mass between V1 and V2,

$$\frac{m_{\rm S,CW=0}^{\rm V1} - m_{\rm S,CW=0}^{\rm V2}}{m_{\rm S,CW=0}^{\rm V1}} \times 100\%$$

=[(992.162-977.37)/992.162]×100%=1.5%, (1)

leads to a very great difference in the abscissas of the COG for the superstructure without a CW mass ($x_{COG,CW=0}$) (Figs. 4 and 6, Table 2). The absolute value of the minimal difference in the COG abscissas (Fig. 6),

$$(x_{\text{COG,CW=0}}^{\text{V2}} - x_{\text{COG,CW=0}}^{\text{V1}})_{\text{min}} = |-902| \text{ mm} = 902 \text{ mm}, (2)$$

represents the maximum difference between the considered abscissas.

The unfavorable shifting of the COG towards the bucket wheel is a consequence of the unfavorable

distribution of the superstructure deadweight for V2. Namely, for V2, the mass of SuS1 is 16.123 t greater and the mass of SuS2 is 30.915 t smaller. For this reason, the V2 superstructure needs a considerably greater CW mass to balance its deadweight (m_{CW0}) (Figs. 5 and 7, Table 2), which increases the total CW mass from m_{CW}^{V1} =197 t for V1 to m_{CW}^{V2} =221 t for V2 to sustain the projected COG abscissas of the superstructure with CW mass (Fig. 8, Table 3).

Fig. 6 Difference between the COG abscissas of the superstructures without a CW mass: V1 vs. V2

Fig. 7 Difference between the masses of the CW for balancing the superstructure deadweight: V1 vs. V2

4 Analytical determination of the BPSS of the superstructure 3D model: V3

The 3D model of the superstructure (Figs. 1–3) enables a very precise determination of the weight and COG position of all structural and mechanical parts that are incorporated in the 3D model with their real shape, dimensions, and masses (Table 4, Figs. 9 and 10).

Fig. 8 Projected COG abscissas (x_{COG}) of the superstructures with a CW mass: V1 vs. V2

Table 3 Projected COG abscissas of the superstructures with a CW mass: V1 vs. V2

BWB position		$x_{\rm COG} ({\rm mm})$	
D WD position	V1	V2	"V2-V1"
L: α _{BWB} =-19.5°	1392	1370	-22
Н	1258	1238	-20
Hi: $\alpha_{BWB}=14.1^{\circ}$	1814	1812	-2

Table 4Mass of the superstructure and its substructures according to the 3D model: V3

	Mass (t)						
Item	SuS1	SuS2	Total without				
			C w mass				
V3	476.119	502.147	978.266				

Table 2 COG abscissas of the superstructures without a CW mass ($x_{COG,CW=0}$) and CW masses for balancing the superstructure deadweight (m_{CW0}): V1 vs. V2

BWB position		$x_{\text{COG,CW=0}}$ (mm	l)	$m_{\rm CW0}$ (t)			
D WD position	V1	V2	"V2-V1"	V1	V2	"V2-V1"	
L ^a : α_{BWB} =-19.5°	-5142	-6036	-894	148.7	172.9	24.15	
H^{b}	-5303	-6198	-895	153.4	177.5	24.13	
Hi ^c : $\alpha_{BWB}=14.1^{\circ}$	-4636	-5494	-858	134.1	157.4	23.26	

^a Low; ^b Horizontal; ^c High

5 Weighing the superstructure

The superstructure was weighed on site immediately after the first erection of the machine (Figs. 11–13, Table 5). During the first weighing (W1), the CW mass was 177.017 t, which was supposed to be enough to balance the superstructure deadweight according to V2. After the first erection,

Fig. 9 COG abscissas of the superstructure without a CW mass: V3

Fig. 10 Mass of the CW for balancing the superstructure deadweight: V3

the CW mass was corrected (54.960 t added), so the CW mass during the second weighing (W2) was 231.977 t. Moreover, during the second weighing, the superstructure was loaded with foreign bodies (1.24 t) and a little bit of snow (Fig. 14).

Fig. 11 BWE during the first weighing on the erection site

Fig. 12 Layout of the measuring points (diameter of the slew bearing, D_{SB} =11000 mm)

Tuste e Tresults of the superior acture weighing										
Support	reaction at n	neasuring po	oints (kN)	Weight of the S ^c ,	Coordinate of the COG (mm)					
R_{A1}	R_{A2}	$R_{\rm B}$	$R_{\rm C}$	$G_{\rm S}({\rm kN})$	x _{COG}	$\mathcal{Y}_{\mathrm{COG}}$				
3259.4	3307.8	2312.1	2620.0	11499.2	-398	-121				
3260.4	3221.9	2305.3	2713.7	11 501.1	-356	-125				
2608.9	2630.5	2967.4	3292.6	11499.4	249	-118				
1808.5	1893.1	4040.6	4361.0	12103.3	1087	-130				
	Support 1 <i>R</i> _{A1} 3259.4 3260.4 2608.9 1808.5	Table 1 Support reaction at m R_{A1} R_{A2} 3259.4 3307.8 3260.4 3221.9 2608.9 2630.5 1808.5 1893.1	Table 6 Testins of 6Support reaction at measuring pr R_{A1} R_{A2} R_B 3259.43307.82312.13260.43221.92305.32608.92630.52967.41808.51893.14040.6	Support reaction at measuring points (kN) R_{A1} R_{A2} R_B R_C 3259.43307.82312.12620.03260.43221.92305.32713.72608.92630.52967.43292.61808.51893.14040.64361.0	Support reaction at measuring points (kN)Weight of the S ^c , R_{A1} R_{A2} R_B R_C Weight of the S ^c ,3259.43307.82312.12620.011499.23260.43221.92305.32713.711501.12608.92630.52967.43292.611499.41808.51893.14040.64361.012103.3	Support reaction at measuring points (kN)Weight of the S ^c , $G_{\rm S}$ (kN)Coordinate of the S ^c , $G_{\rm S}$ (kN) $R_{\rm A1}$ $R_{\rm A2}$ $R_{\rm B}$ $R_{\rm C}$ Weight of the S ^c , $G_{\rm S}$ (kN)Coordinate of the S ^c , $x_{\rm COG}$ 3259.43307.82312.12620.011499.2-3983260.43221.92305.32713.711501.1-3562608.92630.52967.43292.611499.42491808.51893.14040.64361.012103.31087				

Table 5 Results of the superstructure weighing

 $^{\rm a}$ CW mass: 177.017 t; $^{\rm b}$ CW mass: 231.977 t; $^{\rm c}$ Superstructure

Fig. 13 Measuring points (1: hydro cylinder; 2: manometer; 3: load cell; 4: calotte; 5: compensation plates): (a) measuring point A₁; (b) measuring point A₂; (c) measuring point B; (d) measuring point C

Fig. 14 Level of snow during the second weighing: (a) bucket wheel boom; (b) counterweight boom

6 Correction of the mass of the superstructure models based on the results of the first weighing

According to the results of the first weighing (Table 5) the average superstructure mass is

$$m_{\rm S,W1,A} = \frac{1}{3g} \sum_{p=1}^{3} G_{\rm S,p}$$

=[(11499.2+11501.1+11499.4)/(3×9.81)]×10³ kg
=1172.263×10³ kg=1172.263 t,
(3)

where *g* represents the acceleration of gravity, while the mass of the 3D model superstructure (V3, Table 4) with a CW of m_{CW1} =177.017 t (CW mass during the first weighing) is

$$m_{\rm S,CW1}^{\rm V3} = m_{\rm S,CW=0}^{\rm V3} + m_{\rm CW1} = (978.266 + 177.017) t$$

=1155.283 t. (4)

Thus, the experimentally determined superstructure mass is greater by

$$\Delta m_{\rm S}^{\rm V3} = m_{\rm S,W1,A} - m_{\rm S,CW1}^{\rm V3}$$

=(1172.263-1155.283) t=16.980 t (5)

than the superstructure 3D model mass.

The COG abscissas of the superstructure 3D model with a CW mass of m_{CW1} =177.017 t are presented in Table 6. Because the superstructure COG based on the weighing results is shifted towards the bucket wheel (BW) (Tables 5 and 6), the excessive mass Δm_s^{V3} (the so-called 'corrective mass' from Eq. (5)) is on the BWB side. The abscissas of its center (point C in Fig. 15) for characteristic positions of the BWB (low, index "L"; horizontal, index "H"; high, index "Hi") are determined by the expressions:

$$\begin{aligned} x_{\rm C,L} &= \frac{G_{\rm S,L}^{\rm W1} x_{\rm COG,L}^{\rm W1} - m_{\rm S,CW1}^{\rm V3} g x_{\rm COG,L}^{\rm V3}}{\Delta m_{\rm S}^{\rm V3} g} = \{ [11499.2 \times 10^{3} \\ &\times (-398 \times 10^{-3}) - 1155.283 \times 9.81 \times 10^{3} \\ &\times (-75 \times 10^{-3})] / (16.98 \times 10^{3} \times 9.81) \} \text{ m} \\ &= -22.373 \text{ m}, \end{aligned}$$
(6a)
$$x_{\rm C,H} &= \frac{G_{\rm S,H}^{\rm W1} x_{\rm COG,H}^{\rm W1} - m_{\rm S,CW1}^{\rm V3} g x_{\rm COG,H}^{\rm V3}}{\Delta m_{\rm S}^{\rm V3} g} = \{ [11501.1 \times 10^{3} \\ &\times (-356 \times 10^{-3}) - 1155.283 \times 9.81 \times 10^{3} \\ &\times (-66 \times 10^{-3})] / (16.98 \times 10^{3} \times 9.81) \} \text{ m} \\ &= -20.090 \text{ m}, \end{aligned}$$
(6b)
$$x_{\rm C,Hi} &= \frac{G_{\rm S,Hi}^{\rm W1} x_{\rm COG,Hi}^{\rm W1} - m_{\rm S,CW1}^{\rm V3} g x_{\rm COG,Hi}^{\rm V3}}{\Delta m_{\rm S}^{\rm V3} g} = \{ [11499.4 \times 10^{3} \\ &\times 249 \times 10^{-3} - 1155.283 \times 9.81 \times 10^{3} \times 509 \times 10^{-3}] \\ / (16.98 \times 10^{3} \times 9.81) \} \text{ m} = -17.442 \text{ m}, \end{aligned}$$
(6c)

Table 6 Projected COG abscissas of the superstructure3D model (V3) with m_{CW1} =177.017 t

BWB position	$x_{\rm COG} ({\rm mm})$
L: α _{BWB} =-12.9°	-75
Н	-66
Hi: $\alpha_{BWB}=14.1^{\circ}$	509

The abscissa of the corrective mass center, relative to the moving coordinate system $O_1\xi\eta\zeta$ attached to the BWB (Fig. 15), is determined by the following expression:

$$\xi_{\rm C} = a_{\rm C} = -x_{\rm C,H} - c = -(-20.09) - 3.878 = 16.212 \,\mathrm{m},$$
 (7)

where $a_{\rm C}$ and *c* are shown in Fig. 15.

Applicates of the corrective mass center in low and high BWB positions (Fig. 15) are determined by the expressions:

$$\begin{aligned} \zeta_{C,L} &= -b_{C,L} = -(x_{C,L} + c + \xi_C \cos \alpha_{BWB,L}) / \sin \alpha_{BWB,L} \\ &= -\{[-22.373 + 3.878 + 16.212 \cos(-12.9^\circ)] \\ / \sin(-12.9^\circ)\} m = -12.059 m, \end{aligned}$$
(8a)
$$\begin{aligned} \zeta_{C,Hi} &= -b_{C,Hi} = -(x_{C,Hi} + c + \xi_C \cos \alpha_{BWB,Hi}) / \sin \alpha_{BWB,Hi} \\ &= -\{[-17.442 + 3.878 + 16.212 \cos(14.1^\circ)] \\ / \sin(14.1^\circ)\} m = -8.865 m. \end{aligned}$$
(8b)

To obtain a model which gives good approximations of the COG abscissas in both the low and high BWB positions simultaneously, the applicate of the center of the corrective mass is determined by the expression:

where *k* is the corrective factor. The influence of the *k* factor value on the difference between the superstructure COG abscissas obtained experimentally and by calculation ($\Delta x_{\text{COG}} = x_{\text{COG}}^{\text{W1}} - x_{\text{COG}}^{\text{V3}}$) for the characteristic BWB positions is shown in Fig. 16.

In the horizontal BWB position, the applicate of the corrective mass center does not affect the superstructure COG abscissa. Therefore, the difference between the abscissas $\Delta x_{\text{COG,H}}$ (solid line in Fig. 16) is not influenced by variation in the value of coefficient *k*. Lines representing the dependence of

Fig. 16 Deviation of the COG abscissa

Fig. 15 Determination of the corrective mass center position

 $\Delta x_{\text{COG,Hi}}$ (dash line in Fig. 16) and $\Delta x_{\text{COG,L}}$ (dot line in Fig. 16) on the value of the corrective factor k intersect at a point with an abscissa value of k=0.4967. For that value of the corrective factor k, the absolute values of deviations in the COG abscissas, in relation to the abscissas determined using the first weighing results, are smaller than 6 mm. Adopting k=0.5, the corrective mass for V2 was determined analogously.

By introducing the corrective mass determined in this way, V3 is transformed into V4, while V2 is transformed into V5.

7 Discussion 2: comparative analysis of analytical and experimental results

The basic parameters of the superstructure with a CW of m_{CW1} =177.017 t are presented in Figs. 17– 20 and Table 7. Based on the presented results, V4 gives the best approximation of the superstructure COG abscissa in relation to the first weighing results (Fig. 17, Table 7). Nevertheless, it is important to note that the intensities of the winch rope forces, and of the BWB stay forces, are the highest specifically for V4 (Figs. 19 and 20). This is a consequence of the less favorable final deadweight distribution with respect to V1, which was the basic BWE design (Tables 7 and 8). Otherwise, the V4 results are in good agreement with the second weighing results (Fig. 21) and, therefore, V4 was adopted for further analyses and determination of the stress states of the vital superstructure parts.

Fig. 17 Abscissas of the superstructure COG

Fig. 18 Difference in the COG abscissas for V4 and V5

Fig. 19 Winch rope forces caused by deadweight

Fig. 20 BWB stay forces caused by deadweight

Variant	Total mass CW		Total mass without	Abscissa of COG, x_{COG} (mm)				Winch rope force caused by deadweight, $F_{WR,DW}$ (kN)			BWB stay force caused by deadweight, $F_{BWBS,DW}$ (kN)		
v al lalli	(t)	mass (t)	CW mass	L:	L:		Hi:	L:		Hi:	L:		Hi:
			(t)	$\alpha_{\rm BWB} = -19.5^{\circ}$	$\alpha_{\rm BWB} = -12.9^{\circ}$	Н	α _{BWB} = 14.1°	$\alpha_{\rm BWB} = -19.5^{\circ}$	Н	α _{BWB} = 14.1°	$\alpha_{\rm BWB} = -19.5^{\circ}$	Н	α _{BWB} = 14.1°
V1	1169.179	177.017	992.162	829	663	693	1259	234.3	225.9	216.8	2666	2794	2686
V2	1154.387	177.017	977.370	122	-51	-15	581	242.1	233.2	223.7	2744	2874	2760
V3	1155.283	177.017	978.266	114	-75	-66	509	245.2	237.2	228.3	2786	2924	2814
V4	1172.263	177.017	995.246	-215	-392	-356	255	252.2	242.9	233.1	2870	2998	2874
V5	1172.263	177.017	995.246	-219	-392	-352	256	249.3	240.0	230.2	2830	2960	2840
W1	1172.263	177.017	995.246	_	-398	-356	249	_	_	_	-	_	_

Table 7 BPSS, winch rope force, and force in BWB stay

Table 8 Abscissa of COG, winch rope force, and force in BWB stay: V4 vs. V1

Item	Abscissa of COG, x_{COG} (mm)			Winch rope	force, F	WR,DW (kN)	BWB stay force, $F_{BWBS,DW}$ (kN)		
	L: α _{BWB} = -19.5°	Н	Hi: $\alpha_{BWB} = 14.1^{\circ}$	L: α _{BWB} = -19.5°	Н	Hi: α _{BWB} = 14.1°	L: $\alpha_{BWB} = -19.5^{\circ}$	Н	Hi: α _{BWB} = 14.1°
Difference, "V4-V1"	-1044	-1049	-1004	17.9	17.0	16.3	204	204	188

8 Working load analysis

Load analysis of the vital superstructure parts was carried out according to code DIN 22261-2 (DIN, 2014) for load case (LC) H1.2 (BWE in normal operation) (Figs. 22–24) using our original, inhouse software "EXLOAD".

9 Stress state of the BWB stay

BWB stays (Fig. 25a) consist of three hingejoined segments. Each comprises two lamellas made from steel of quality grade S355J2+N, according to code prEN 10025-2 (CEN, 2011). For an eye plate thickness of 50 mm (Fig. 25b), the yield stress value is σ_{YS} =335 MPa (CEN, 2011).

The factored tension force per lamella is determined by

$$Z = \gamma_F F_{BWBS,max} / n_L$$

=(1.5×4318/2) kN=3238.5 kN, (10)

where γ_F =1.5 is the factor of safety in LC H1.2 (DIN, 2014), $F_{BWBS,max}$ =4318 kN is the maximum force in

Fig. 21 Abscissa of COG: V4 vs. W2

Fig. 22 Maximum winch rope force in LC H1.2

Fig. 23 Percentage contribution to maximum winch rope force: (a) SuS1 deadweight and normal tangential force; (b) material load, incrustation, and inclination

Fig. 24 Maximum force in one BWB stay for LC H1.2

Fig. 25 BWB stays (a) and geometry of the eye plate (b) 1: lamella; 2: hinge pin; 3: plate; 4: connecting tube; $S_{1,L}$, $S_{2,L}$, and $S_{3,L}$ are the segments of the left stay; $S_{1,R}$, $S_{2,R}$, and $S_{3,R}$ are the segments of the right stay

one BWB stay (Fig. 24), and $n_L=2$ is the number of lamellas in each segment of the BWB stays. According to DIN 22261-2 (DIN, 2014), the value of nominal stress caused by the tension force is

$$\sigma_{nZ} = Z/(2ct) = [3238.5/(2 \times 18 \times 5)] \text{ kN/cm}^2$$

= 18.0 kN/cm²=180 MPa, (11)

while the value of nominal stress caused by the frictional moment is

$$\sigma_{n\mu} = 8\mu \sigma_{nZ} / [\pi (1 + R/r)]$$

= {8×0.33×180/[\pi (1 + 29/11)]} MPa
= 41.6 MPa, (12)

where μ =0.33 is the frictional coefficient.

The stress state of the lamella was also identified by applying the linear finite element method (FEM), neglecting the influence of the frictional moment. In the critical eye plate cross section, the maximum value of the stress tensor component in the tension force direction is σ_{max} =496 MPa (Fig. 26).

10 Discussion 3: load and stress analyses results

Based on the results presented in Fig. 23a, the dead load has the most influence on the load of the winch rope. In LC H1.2 its minimum percentage contribution to the maximum winch rope force is 74.8%, whilst the maximum contribution of the normal tangential force is 14.1%. The contribution of the other factors (Fig. 23b) is considerably lower: material load, maximum 4.4%; bucket wheel incrustation, maximum 4.7%; conveyor incrustation, maximum 0.4%; inclination, maximum 1.6%. These findings underline the importance of a precise identification of the weight and COG of all parts, as well as of the entire superstructure.

In terms of the nominal stress values in the critical eye plate cross section, Eqs. (11) and (12), and applying the procedure prescribed in DIN 22261-2 (DIN, 2014),

$$1.4\sigma_{n}=1.4(\sigma_{nZ}+\sigma_{n\mu})=1.4\times(180+41.6) \text{ MPa}$$

=310.2 MPa< $\sigma_{YS}=335 \text{ MPa},$ (13)

Fig. 26 Stress tensor component in the direction of the tension force (a) and distribution in the eye plate critical cross section (b)

we conclude that the eye plate satisfies the strength criterion. However, values of the corresponding stress tensor component in the critical eye plate cross section, caused by the factored tension force, are greater than the yield stress value up to a depth of 16 mm, measured from the edge of the hole (Fig. 26b). The value of the geometric stress concentration factor is

$$\alpha_{\rm K} = \sigma_{\rm max} / \sigma_{\rm nZ} = 496 / 180 = 2.76.$$
 (14)

This value of $\alpha_{\rm K}$ is in full agreement with values given in the literature. For example, according to values

presented in Fig. 25b, for

$$(R-r)/(R+r)=(29-11)/(29+11)=0.45,$$
 (15)

and

$$1+e/(R-r)=1+8.5/(29-11)=1.47,$$
 (16)

the diagram shown in Fig. 7 of Petersen (1990) gives $\alpha_K \approx 2.9$.

Therefore, according to the results of the linear FEM and published data, the geometric stress concentration factor value is about twice as great as the factor 1.4 (Eq. (13)) prescribed by DIN 22261-2 (DIN, 2014). Keeping in mind that tension stresses are dominant in the critical zone, we conclude that the considered eye plate is the weak point in the superstructure and presents a potential danger to its integrity, although it satisfies the strength criterion prescribed by DIN 22261-2 (DIN, 2014).

11 Conclusions

The deadweight is a dominant load of the vital parts of a BWE's superstructure, such as stays and winch ropes. However, due to its nature, from the entire set of BWE superstructure's loads, only the deadweight does not have the character of assumption. Therefore, its identification should be conducted with the utmost care during the BWE design, as well as during the first erection.

Based on the presented investigation results we conclude the following:

1. A relatively small difference in the calculated superstructure masses (1.5%) leads to a relatively large unfavourable shifting of its COG (902 mm towards the bucket wheel), followed by a significant increase in the counterweight mass required for balancing (24 t).

2. The 3D model of the superstructure enables a very precise determination of its weight and COG position.

3. By merging the results obtained from the superstructure 3D model and the weighing conducted after the completion of the erection process (first weighing), the distribution of superstructure masses can be fully identified, and a corrected 3D model created. The validity of the model is confirmed by the results of the second weighing, conducted after the correction (increase) of the counterweight mass. The 3D model developed in such a manner provides enough accuracy in determining the superstructure COG in the complete domain of the bucket wheel boom inclination angle, and enables accurate load analysis of the superstructure's vital parts.

4. In LC H1.2 (BWE in normal operation) the minimum percentage contribution of the SuS1 deadweight to the maximum winch rope force is 74.8%.

5. The procedure for the proof of the eye plates' stress prescribed by code DIN 22261-2 (DIN, 2014) gives results, which are not on the side of safety, as demonstrated by the example of the bucket wheel boom stay's eye plate.

References

- Bartelmus, W., 2006. Condition Monitoring of Open Cast Mining Machinery. Wroclaw University Press, Wroclaw, Poland.
- Bartelmus, W., Zimorz, R., 2009. A new feature for monitoring the condition of gearboxes in non-stationary operating conditions. *Mechanical Systems and Signal Processing*, 23(5):1528-1534.

http://dx.doi.org/10.1016/j.ymssp.2009.01.014

Bošnjak, S., Zrnić, N., 2012. Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems. *Archives of Civil and Mechanical Engineering*, **12**(3):348-359.

http://dx.doi.org/10.1016/j.acme.2012.06.009

- Bošnjak, S., Oguamanam, D., Zrnić, N., 2006. On the dynamic modeling of bucket wheel excavators. *FME Transactions*, 34(4):221-226.
- Bošnjak, S., Zrnić, N., Simonović, A., *et al.*, 2009a. Failure analysis of the end eye connection of the bucket wheel excavator portal tie-rod support. *Engineering Failure Analysis*, **16**(3):740-750.

http://dx.doi.org/10.1016/j.engfailanal.2008.06.006

Bošnjak, S., Petković, Z., Zrnić, N., et al., 2009b. Cracks, repair and reconstruction of bucket wheel excavator slewing platform. Engineering Failure Analysis, 16(5): 1631-1642.

http://dx.doi.org/10.1016/j.engfailanal.2008.11.009

- Bošnjak, S., Zrnić, N., Gašić, V., et al., 2012. External load variability of multibucket machines for mechanization. Advanced Materials Research, 422:678-683. http://dx.doi.org/10.4028/www.scientific.net/amr.422.678
- CEN (European Committee for Standardisation), 2011. Hot Rolled Products of Structural Steels-Part 2: Technical Delivery Conditions for Non-alloy Structural Steels,
- prEN 10025-2:2011. CEN, Brussels, Belgium. Czmochowski, J., 2008. Identyfikacja modeli modalnych maszyn urabiających w górnictwie węgla brunatnego.

Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland (in Polish).

- DIN (Deutsches Institut für Normung), 2014. Bagger, Absetzer und Zusatzgeräte in Braunkohlentagebauen-Teil 2: Berechnungsgrundlagen, DIN 22261-2:2014. DIN, Germany (in German).
- Dudek, D., Frydman, S., Huss, W., et al., 2011. The L35GSM cast steel–possibilities of structure and properties shaping at the example of crawler links. Archives of Civil and Mechanical Engineering, 11(1):19-32. http://dx.doi.org/10.1016/S1644-9665(12)60171-X
- Durst, W., Vogt, W., 1988. Bucket Wheel Excavator. Trans Tech Publications, Clausthal-Zellerfeld, Germany.
- Gottvald, J., 2010. The calculation and measurement of the natural frequencies of the bucket wheel excavator SchRs 1320/4x30. *Transport*, **25**(3):269-277. http://dx.doi.org/10.3846/transport.2010.33
- Gottvald, J., Kala, Z., 2012. Sensitivity analysis of tangential digging forces of the bucket wheel excavator SchRs 1320 for different terraces. *Journal of Civil Engineering* and Management, **18**(5):609-620. http://dx.doi.org/10.3846/13923730.2012.719836
- Nan, N., Kovacs, I., Popescu, F., 2008. Balance control by weighting and tensiometric measurements of bucket wheel excavators. WSEAS Transactions on Systems and Control, 3(11):927-938.
- Petersen, C., 1990. Stahlbau: Grundlagen der Berechnung und Baulichen Ausbildung von Stahlbauten, 2nd Edition. Vieweg, Braunschweig, Germany.
- Rişteiu, M., Ileană, I., Duma, S., 2006. New approaches in heavy duties industrial processes monitoring by using smart sensors. *Acta Universitatis Apulensis*, **12**:80-92.
- Rusiński, E., Czmochowski, J., Iluk, A., *et al.*, 2010a. An analysis of the causes of a BWE counterweight boom support fracture. *Engineering Failure Analysis*, 17(1): 179-191.

http://dx.doi.org/10.1016/j.engfailanal.2009.06.001

Rusiński, E., Moczko, P., Kaczyński, P., 2010b. Structural modifications of excavator's bucket wheel by the use of numerical methods. *Solid State Phenomena*, 165:330-335.

http://dx.doi.org/10.4028/www.scientific.net/ssp.165.330

Rusiński, E., Dragan, S., Moczko, P., et al., 2012. Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit. Archives of Civil and *Mechanical Engineering*, **12**(4):471-476. http://dx.doi.org/10.1016/j.acme.2012.07.002

- Savković, M., Gašić, M., Arsić, M., et al., 2011. Analysis of the axle fracture of the bucket wheel excavator. Engineering Failure Analysis, 18(1):433-441. http://dx.doi.org/10.1016/j.engfailanal.2010.09.031
- Yin, Y., Grondin, G.Y., Obaia, K.H., et al., 2007. Fatigue life prediction of heavy mining equipment. Part 1: Fatigue load assessment and crack growth rate tests. *Journal of Constructional Steel Research*, 63(11):1494-1505. http://dx.doi.org/10.1016/j.jcsr.2007.01.008
- Yin, Y., Grondin, G.Y., Obaia, K.H., et al., 2008. Fatigue life prediction of heavy mining equipment. Part 2: Behaviour of corner crack in steel welded box section and remaining fatigue life determination. Journal of Constructional Steel Research, 64(1):62-71. http://dx.doi.org/10.1016/j.jcsr.2007.04.003

<u>中文概要</u>

- 题 目: 斗轮挖掘机回转支承上部结构中关键部件的静态稳定性基本参数、负载和强度研究
- 6 約:斗轮挖掘机回转支承上部结构的重量和重心位置不仅在设计过程中非常重要,在斗轮挖掘机组装完成后和运转时同样重要。本文旨在研究各参数对重心位置的影响。
- 方法:1.分析比较由数值模拟和实验得到的静态稳定 性基本参数;2.构建上部结构的3D模型(图 1~3),并根据斗轮挖掘机组装完成后的重量分 布对模型进行质量修正;3.对上部结构进行负 载和应力分析。
- 结 论: 1. 上部结构一个较小的质量变化(1.5%)会导致重心位置一个较大的变化(902 mm),从而不得不明显增加配重的重量(24 t)来保持平衡;
 2. 构建的 3D 模型可以得到精确的上部结构重量分布和重心位置;3.由 DIN 22261-2标准规定的眼板应力被证明并不安全。
- **关键词:** 斗轮挖掘机; 回转支承上部结构; 静态稳定性 参数; 负载; 强度

365